
PHYSICAL REVIE% B VOLUME 42, NUMBER 15 15 NOVEMBER 1990-II

Supershells in metal clusters

H. Nishioka
Department ofPhysics, Konan University, 8-9-1 Okarnato, Higashinada ku-, Kobe 658, Japan

and The Niels Bohr Institute, University of Copenhagen, DK 210-0 Copenhagen 9, Denmark

Klavs Hansen
Tandem Accelerator Laboratory of The Niels Bohr Institute, DK 4000-Roskilde, Denmark

B.R. Mottelson
Nordisk Institut for Teoretisk Atomfysik (NORDITA), DK 2100 C-openhagen 9, Denmark

(Received 5 April 1990)

Assuming a spherical mean field for electrons in metal clusters, single-particle level densities and
electronic binding energies are calculated for clusters with up to 4000 valence electrons. Two phe-
nomenological mean-field potentials, simulating microscopically calculated ones, are used. A global
beating pattern, which envelopes individual shell oscillations, emerge from the calculations. The
semiclassical interpretation of such a supershell structure, as proposed by Balian and Bloch in terms
of interference of amplitudes associated with classical closed orbits, is found to be valid in the
present case. Thermal effects, which tend to smear out shell and, therefore, supershell structures,
are investigated qualitatively. Consequences of the shell structure are not obscured for cluster sizes

up to several thousand atoms under the experimentally accessible temperature of 100-1000K.

I. INTRODUCTION

For several years the properties of atomic and molecu-
lar clusters have attracted considerable interest. This is
to a great extent due to the fact that the properties of
clusters do not in general vary smoothly between the iso-
lated atom or molecule and the bulk. One of the most
striking manifestations of this nonuniform approach to
the bulk is the variations in the abundance of clusters
with different mass numbers, when produced, e.g. , in a
supersonic expansion or by sputtering. '

The abundance spectra show pronounced peaks for
clusters composed of metal atoms as well as for nonmetal
elements, albeit at different mass values for the two kinds
of cluster. Whereas the peaks in the abundance spectra
for clusters composed of nonmetal elements can be ex-
plained by reference to certain geometrical configurations
of the atoms in the cluster, the explanation in the case of
metal clusters is related to the quantized motion of the
valence electrons within the entire cluster volume.

The "magic numbers" for metal clusters were first ob-
served by Knight et al. (for sodium ) and by Katakuse et
al. (for silver ) and were shown to be analogous to "mag-
ic numbers" for nuclei. For the nuclei these numbers
correspond to the numbers of neutrons and protons at
which nuclei are particularly stable, and the investigation
of stability versus particle number led to an understand-
ing of the shell structure in nuclei. It was realized that
the "magic numbers" re6ect shell closings arising from
the quantization of the motion of delocalized fermions in
a mean-field potential of high symmetry.

The mean-field potential of nuclei is observed to be al-
most constant ( = —50 MeV) in the interior and to vanish
smoothly at the surface of the nuclei. Neglecting the

spin-orbit coupling, which is very small in clusters of
lighter elements, such a potential produces shell closings
at particle numbers N=2, 8,20,34,40,58,92. These are
precisely the number of electrons in the metal clusters for
which the mass spectra exhibit local maxima.

The shell closings were found not only in the abun-
dance spectra but also later for the static polarizability
and in the ionization potentials (although the magnitude
of the efFect for the ionization potential is smaller than
anticipated). There is, therefore, very little doubt that an
important part of the ground-state energy of (alkali-
metal) clusters with a number of atoms N & 10 is deter-
mined by the motion of the valence (or conduction) elec-
trons and that these can be considered to move in a com-
mon mean-field potential similar to the potential experi-
enced by a nucleon in a nucleus.

The discovery of quantal shells in metal clusters estab-
lishes illuminating connections between this field of
research and the studies of atoms and nuclei which are
also dominated by shell structure. In addition the
discovery opens completely new possibilities for investi-
gations of shell structure in systems with particle number
N sufficiently large so as to reveal the characteristic struc-
ture expected in the semiclassical limit. With atoms and
nuclei there is a natural upper limit of particle number N.
With metal clusters there is no such upper limit. In prin-
ciple N can be varied from 1 to ao, so that investigation
of changes in properties from atomic levels to bulk met-
als, characterized by band structure, should be possible.
There are indeed current experimental efforts to extend
the measurements to large magic numbers.

The shell structure, or the quasiperiodic oscillation of
the single-particle level density, tends to die out gradually
as N becomes larger. In a spherical potential, however,
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the decrease in amplitude of the oscillation for a given
value of N relative to the monotonous average level densi-

ty is of the order X ' (Ref. 10). It is still 30% in the
N = 10 region, and does not exclude the possibility of ob-
serving shell effects for clusters up to, at least, this size
range.

Balian and Bloch have shown" that the single-particle
level density for a spherical cavity behaves in a very
characteristic way. As a function of energy (or momen-
tum) the level density shows a global long-wavelength os-
cillating pattern that envelopes short-wavelength periodic
oscillations, each corresponding to an ordinary shell. We
associate these long-range oscillations with "supershells. "
Balian and Bloch have clarified the origin of the super-
shells in a simple and beautiful way through a semiclassi-
cal treatment of the single-particle level density. The
supershell is the beating pattern of two interfering waves
associated in the semiclassical treatment with triangular
and square closed orbits inside the cavity. The neighbor-
ing shell spacing in momentum is proportional to the in-
verse of the length of the shortest orbit (triangle), while
the supershell spacing is proportional to the inverse of
the length difference between the two orbits, which is
—11 times the shell spacing.

Despite its beauty Balian and Bloch's work has not re-
ceived much attention in the 18 years that have elapsed
since it appeared. This is because one period of the
supershell encompasses a number of single-particle levels
of the order of 10 . As a consequence, this work was
often considered to be a purely theoretical exercise of lit-
tle relevance for the description of realistic quantum sys-
tems on the earth or elsewhere in the universe. The
discovery of shell structure in metal clusters has brought
new attention to their work, since now the supershell has
become a phenomenon that can be investigated experi-
mentally as well as theoretically.

The spherical cavity used by Balian and Bloch in order
to illustrate the supershell is too simple to allow realistic
predictions of the level densities in metal clusters. On the
other hand, self-consistent calculations of the mean-field
potentials for metal clusters using the spherical and
homogeneous jellium model as an approximation to the
distribution of the positively charged ions give an almost
constant value for the potential inside the cluster and a
smoothly and rapidly increasing surface part. ' ' This
leads us to expect that the results obtained with the
spherical cavity are not entirely without relevance to
metal clusters; we expect supershells to appear also with
more realistic potentials.

In this paper we present the results of level-density and
binding-energy calculations for electrons in potentials
that simulate the self-consistent mean-field potentials de-
rived by Ekardt for Na clusters. ' The potentials are
given in Sec. II. The results given in Secs. III—V show
that there are indeed supershells in Na clusters, provided
that the mean field is still a valid concept for clusters con-
taining 1000 or more atoms. In these sections we also in-
vestigate the level densities semiclassically and prove that
Balian and Bloch's interpretation of the supershells in
terms of the closed orbits is valid for the metal clusters.

There are, however, several aspects to the cluster struc-

ture and their production processes that set limits to the
observation of shell structure, and therefore, of the super-
shells. We shall make qualitative investigations of such
finite-temperature effects in Sec. VI.

II. MEAN-FIELD POTENTIALS
FOR VALENCE ELECTRONS

The Kohn-Sham density-functional method' is one of
the most practical and also successful methods for calcu-
lating electronic properties of metals. Within the Kohn-
Sham framework, the jellium approximation to the posi-
tively charged ionic background has given quantitative
agreement not only with bulk properties, but also with
the measured surface energies of alkali metals (except for
lithium). ' Recently this self-consistent jellium model has
been applied to metal clusters, especially to Na clus-

rs 12, 13

Effective local mean-field potentials for the valence
electrons were calculated assuming a spherical distribu-
tion of the ionic background with uniform density equal
to that of bulk sodium metal. The measured magic num-
bers were verified by the calculated ionization potentials,
displaying maxima at shell closings and thus indicating
relatively high stability of clusters with closed shells. '

Ekardt' also calculated the effective mean-field poten-
tials for particle numbers corresponding to a complete
filling of each orbit up to N = 198. The general properties
of these potentials are, first, almost uniform depth of the
inner part, and second, a universal shape of the smoothly
vanishing surface part. There are small deviations from
the uniform depth of the inner part, which make the bot-
tom of the potential wavy. These deviations show no sys-
tematic behavior except for a small dip near the surface,
and become smaller as N increases. We shall assume that
their effects on the shell and supershell structures are of
minor importance so that they can be neglected.

Ekardt's potentials will here be approximated by a sim-
ple three-parameter analytic expression in terms of a
spherical Woods-Saxon potential:

Vo
U(R )=

1+exp[(R —R 0 ) /a 0 ]
with parameter values

(2. 1)

Vo= —6.0 eV,

Ro=roN' ', ro=2. 25 A, (2.2)

a0=0.74 A .

The quantity Vo is the depth of the potential, Ro is the
radius, and ao is the surface thickness, whereas R is the
radial coordinate. The potential (2.1) vanishes faster than
Ekardt's as R exceeds Ro. Still, the Fermi energy is 3 eV
(half of the total depth of the potential) as it should be,
and the single-partic1e wave functions of the occupied
states extend only slightly into the region R & Ro. There-
fore the small difference at R & Ro is not a serious prob-
lem for the calculation of the orbits occupied in the
ground-state configuration. The value of ro in Eq. (2.2) is
slightly larger than the Wigner-Seitz radius for bulk sodi-
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um (2.08 A). This is due to the so-called "spill out" re-
sulting from the extension of the electrons into the region
outside the positive charge. As X increases ro should
eventually approach the Wigner-Seitz radius. This slight
dependence of ro on X is neglected in our calculations,
because its effect should be of minor importance for the
phenomena considered in the present work.

We also explore another type of potential, which was
obtained through a semiclassical approximation' apply-
ing the Kohn-Sham density-functional method to a posi-
tive jellium background. In this approximation the densi-
ty of the occupied electrons is expressed by a smooth
three-parameter pro61e function which is determined
variationally by requiring a minimum energy in the
Kohn-Sham procedure. (For details see Ref. 17.) Figure
1 compares this potential (solid curve) with the Woods-
Saxon potential (dotted curve) for %=1000. The inner
part is slightly shallower and the outer part is deeper
than the Woods-Saxon potential. A potential of this
shape is called a "wine-bottle" potential in nuclear phys-
ics, and we will adopt this name in the following.

The "wine-bottle" potential has the advantage of
reproducing the shallow minimum of Ekardt's potential
in the surface region. On the other hand, the validity of
the semiclassical approximation for metal clusters is still
to be demonstrated. ' All in all, it is difBcult to know
which of the two potentials is more realistic. In the fol-
lowing numerical studies we shall therefore use these two
types of potential without any preference of one over the
other. In doing so we are able to investigate effects on
the shell and supershell structures coming from small
differences in the potentials.

III. LEVEL DENSITIES
IN THE WOODS-SAXON POTENTIAL

A. Quantum-mechanical calculation

The calculation of the single-particle level energies is
performed by solving the radial wave equation numerical-

k = —[2m(E —Vo)]'~1
(3.1)
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ly from the origin and identifying the solutions where the
wave function vanishes smoothly, with the proper asymp-
totic form, for large distances. '

As in the case of the spherical cavity, "we plot the lev-
el density as a function of the wave number k rather than
of the energy. Then the shell peaks appear approximate-
ly equally spaced in k, with the separation
ak =O.sr-'" A -'.

Since the Woods-Saxon potential has a flat bottom, the
wave number k is defined in a natural way as
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FIG. l. Comparison of the Woods-Saxon potential (solid
curve) and the wine-bottle potential (dotted curve) with
X= 1000.

FICs. 2. Single-particle level densities in the Woods-Saxon
potential with X= 1000, 2000, and 3000 for (a), (b), and (c), re-
spectively.
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where m is the electron mass and Vo is the depth of the
potential ( Vo = —6.0 eV).

For each single-particle binding energy E„I a wave
number k„& is defined by Eq. (3.1). In order to visualize
the shell and supershell structures clearly, we use the for-
mal method of adding an imaginary part k; to each k„I.
Instead of a sequence of 5 functions, the level density is
then smeared out and is given by

p(E)= 2m 2(21 +1) 2k;k„i
(k' —k' )'+(2k k )'

(3.2)

The k,. is chosen to be 0. 13N ' A ', which is a quar-
ter of the spacing of successive shells.

In experimental situations the smearing width has ac-
tual physical significance in terms of a characteristic tem-
perature of the system under investigation. For example,
a proper treatment of the effect of shells on the abun-
dance spectra requires the introduction of a width of the
order of the temperature. We discuss this temperature
effect in Sec. VI. In the present section the width is in-
cluded merely to visualize the shell and supershell struc-
tures.

The calculated level densities p(E) are shown in Figs.
2(a), 2(b), and 2(c) for N=1000, 2000, and 3000, respec-
tively. The wave number kf corresponding to the Fermi

0

energy is 0.89 A . In addition to the equidistant shell
minima, the supershell structure, which is an envelope of
the shell peaks, is clearly seen in these figures. For
N=1000 the first node of the supershell is located at the
Fermi level kf, and moves down gradually as N increases.
For 2000 ~ N ~ 3000 there is an antinode at kf, indicating
enhanced shell effects in this mass region.

Level densities at the Fermi energy have direct impor-
tance for a number of measurable quantities, and we have
calculated p(Ef ) for each cluster number up to 4800.
Figure 3 exhibits the values of p(Ef ) obtained by smear-

ing the individual levels by 0.08 eV ( =900 K). The rep-
resentation in Fig. 3 provides an alternative way of view-

ing the shells and supershells exhibited in Fig. 2.

In Sec. III B we shall compare these purely numerical
results of the quantum calculations with the semiclassical
theory of Balian and Bloch.

p(E)=pr„(E)+ g AMcos 2n.M.
M

+M

4 4

(3.3)

where the M is a vector of two positive (nonzero) integer
components, MI and M, . Each set of MI and M,
represents a classical closed orbit with MI turns in the an-

gular direction and M, oscillations in the radial direction.
The quantity IM is a set of two actions of the correspond-
ing invariant torus with the frequency ratio
cu&/co, =MI /M, . The aM denotes the Maslov index asso-
ciated with the closed orbit M [see Eq. (3.6)]. The ampli-
tude AM is positive for all values of MI and M, . The first
term in Eq. (3.3) is the Thomas-Fermi average level den-

sity, which does not contribute to the shell structure.
The action term in the exponential is given as

2m.M IM= fp(r) dr,
where the p(r) is the classical momentum of the particle
which moves along a closed orbit, and the usual relation
p=Ak with the quantal wave vector is assumed. The
magnitude of the momentum is given by

B. Semiclassical analysis

Deriving a semiclassical expression for the quantal lev-
el density in the spherical cavity in terms of a sum of con-
tributions from different closed classical orbits, Balian
and Bloch" were able to show that a supershell structure
will emerge as a result of interference of amplitudes asso-
ciated with classical triangular and square orbits. We in-
vestigate whether their interpretation of the supershells is
also valid in the case of a Woods-Saxon potential.

There are several differences in the semiclassical ex-
pression for the level density between the cases of the
spherical cavity with an infinitely high wall and of the
smooth Woods-Saxon potential. A convenient expres-
sion was derived for smooth spherical potentials by Berry
and Tabor. ' For the Woods-Saxon potential their ex-
pression reduces to

~p(r) ~

=
I 2m [E—U(r )]I

'~ (3.5)

N (~svtxr af &a&~)

FIG. 3. Single-particle level densities at the Fermi energy in

the ~oods-Saxon potential. The smearing energy width is 0.08
eV. The Fermi energy is determined for each size N so that the
integration of this level density up to the energy is equal to N.

The integration in Eq. (3.4) is over one period of the
closed orbit.

Equivalent to the smearing of the level energies, the
~k(r)~ is replaced by ~k(r)~+ik, When in.cluded in Eq.
(3.3) this imaginary part of the wave number produces a

Msuppression factor e ', where I.M is the trajectory
length of the corresponding closed orbit.

A typical length of orbits turning around MI times in

the angular direction before they close is
2aM&RO =4.50~MIN' A. As already stated, the value

of k; used in the quantum-mechanical calculation shown
in Fig. 2 is 0. 13N ' A ', and the suppression factor

1.8M
thus becomes e ', which is a rapidly decreasing func-
tion of MI. !n the level-density calculation at the Fermi
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level shown in Fig. 3, the suppression factor is similar to
the one stated above in the mass region N=10. We
therefore consider only closed orbits with one turn
(MI = 1) in the following.

Although all orbits are rounded off in a smooth poten-
tial, the single-turn orbits can still be identified by the
numbers M, . As a consequence we shall still denote the
M, =3 and 4 orbits by the triangular and square orbits,
respectively, in analogy to the spherical cavity case.

Unlike the spherical cavity, there are only a finite num-
ber of single-turn orbits in the Woods-Saxon potential.
The number increases as ~N' . The single-turn orbits
near the Fermi energy, where the shell and supershell
structures have the largest effects on observables, are list-
ed in Table I for different intervals of N. Among the
closed orbits in Table I the pendulating and circular or-
bits (M, =2 and ao, respectively) contribute to the level

density only to higher order in A' . They have negligible
contributions in the A'~0 limit.

Following Balian and Bloch we view the triangular
(M, =3) and square (M, =4) orbits as responsible for the
supershell structure in moderate-size clusters N & 3000.

The Maslov index in the smooth potential case is

aM'M=2M, +2MI .

Defining

(3.6)

TABLE I. Existing single-turn closed orbits in the %'oods-

Saxon potential. The calculation was made for N=100,200,
300, . . . , up to 3000. The orbits are denoted by M„where the
M, =2 corresponds to a straight-line orbit through the center,
and the M, = 00 orbit corresponds to the circle.

Number of atoms

Ay=2m. ( W3 —W~) —m. . (3.8)

f(L ) = g 2(2l + 1)k„i e
nl

(3.9)

We included single-particle levels from the lowest energy
up to E„&(—2.5 eV, slightly higher than the Fermi ener-

gy. We also transformed the smeared level density of Eq.
(3.2) in order to show the effect of the smearing. For the
convenience of display the absolute values are taken.

Figure 5 shows the results for N =3000. The solid and
dashed curves are with and without the smearing, respec-
tively. In both curves there are two prominent peaks, at
lengths L =171.2 and 184.1 A. In the Woods-Saxon po-
tential they cannot be expected to exactly equal the tra-
jectory lengths, but they should be very near to them.
The corresponding triangular and square trajectory
lengths in a spherical cavity with the radius roN' A are
168.6 and 183.6 A, respectively. The positions of the two
peaks are thus very close to the lengths of triangular and

When b,y=2n sr (n is an integer) the two contributions
add constructively, and when her=(2n+1)n they add
destructively.

The difference b W=8'3 —8'4 was calculated at the
Fermi energy for 100~N & 3000. The result is shown in
Fig. 4 where it can be seen that 6$"=1.0 at N =900, in-
dicating destructive interference and therefore a node of
the supershell at the Fermi energy. The value of 68' is
1.5 at N =2200, indicating a constructive sum of the am-
plitudes. The slope of the 68'curve is less steep in the
region 2000(N ~ 3000, and therefore the antinode of the
supershell will persist in a wide range of N. All the re-
sults of the semiclassical estimates are paralleled in the
quantum-mechanical calculations as shown in Figs. 2 and
3.

For completeness we Fourier transformed the
quantum-mechanical spectrum shown in Fig. 2 in order
to confirm the dominance of the two closed orbits:

WM =—M IM, where M=(1,M, ),1
(3.7)

the difference of the phase in Eq. (3.3) between the contri-
butions of the triangular and square orbits is N43600

1.00

0.75

025

0.00
0

I

N (rmrher af atoms)

FIG. 4. The action difference b 8'between the triangular and
square orbits in the Woods-Saxon potential.

FIG. 5. Absolute values of Fourier components of the level
energies in the Woods-Saxon potential with N= 3000. The solid
and dashed curves are with and without the smearing, respec-
tively.
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square orbits in the spherical cavity. This confirms that
the interference of the two amplitudes associated with the
two closed orbits is indeed the source of the supershell
structure also for the case of the Woods-Saxon potential.

The difference of the phases of Eq. (3.9) between
the two peaks at the Fermi energy
is (1/2')k„&(b L ) = (1/2m )0.89(184.1 —171.2)= 1.83,
which agrees within a reasonable accuracy with the semi-
classical calculation of the phase difFerence 5 W, as sho~n
in Fig. 4.

There are other smaller peaks in Fig. 5. They can all
be identified with closed orbits. The peaks with larger L
contribute to fine structures in the level density and are
strongly suppressed in the solid curve for the smeared
level density. The small peak at L =130 A comes from
the pendulating orbit.

IV. BINDING ENERGIES

15

(g l0

05

-1,0
-15
-2.0
-25
-30

0 2 4 6 8 6 Q

~1/3

FIG. 6. The shell part of the total electronic binding energies
of clusters as a function of N' '.

The most direct experimental verification of the calcu-
lated electron eigenenergies would be based on spectro-
scopic experiments. At present such experiments are
missing, except for quite small clusters. The mass spec-
troscopic measurements of cluster abundances, on the
other hand, hinge on variations in separation energies of
evaporated neutral atoms, and these variations also
reflect the electronic shell eft'ects. In the following we
therefore calculate the shell oscillation part of the total
binding energy of valence electrons in each cluster using
the Woods-Saxon potential. We subsequently identify
this part with the oscillating contribution to the total
binding energy of the metal clusters. The peaks in the
abundance spectra correspond to particularly stable clus-
ters, namely, to clusters which have larger binding ener-
gies than the clusters with neighboring masses.

We proceed as follows. For each N all single-electron

energies E of the occupied states in the ground-state
configuration are summed up. This sum is then divided
into a smooth average part E,„and a shell part E,h,11.

N

E(N)= g E =E (N)+E& ~gh(N) (4.1)

The E,„ is parametrized as consisting of a volume term
( ~ N ) plus a surface term ( ~ N ). The coefficients are
obtained through a y ftt to all E(N ) between 1 and 4800
leading to the result E,„=—4.34N+ 2.96N eV.
When this is subtracted from the energy sum (4.1), the re-
sulting E,&,11

is obtained as shown in Fig. 6. We note that
the abscissa is not N itself but N' . With this choice of
scale the oscillations are equally spaced. The number of

TABLE II. Minimum points of the shell energy as a function of the electron number. The pairs included in parentheses denote
double minima which are close to each other.

Electron number
N 1 /3

Shell energy
(eV)

Electron number
N 1/3

Shell energy
(eV)

2
8

20
40
58

(68
92

138
198

' 254
268
338
440
562
694

1.26
2.00
2.71
3.42
3.87
4.08
4.51
5.17
5.83
6.33
6.45
6.97
7.61
8.25
8.85

—1.02
—1.11
—1.12
—0.90
—0.56
—0.19
—0.94
—1.19
—1.07
—0.74
—0.67
—1.40
—1.74
—1.44
—1.07

832
1012
1100
1216
1314
1516
1760
2048

i2334
l2368
2672
3028
3438
3848
4154

9.41
10.04
10.32
10.67
10.95
11.49
12.07
12.70
13.26
13.33
13.88
14.47
15.09
15.67
16.08

—1.35
—1.43
—1.00
—0.70
—1.54
—1.87
—2.38
—3.00
—3.08 '

—2.92
—2.99
—2.99
—2.77
—1.87
—0.78
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V. LEVEL DENSITIES
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~ ~

b E . (3.1) is therefore not quite unambi-wave number y q. . i
f the Woods-In order to compare with the case o eguous. n or e

use E . (3.1); with the
value of Vo chosen to be —5.95 eV. The magnitude of

k is the same as beforethe imaginary momentum k; is e
0. 13m ''3A ').

. 7(a) 7(b), and 7(c) forThe results are shown in Figs. a,
N=1000, 2000, and 3000, respectively. At N=N=1000 t e

m ared to the Woods-shell structure is enhanced compa
'

level (k =0.89 A ) there isSaxon case. At the Fermi eve f = . is
d of the supershell structure. At t..e..e N=an antino e o e

ver. There seems tothe shell structure is suppressed all over. ere
be a node o ef th supershell structure near
k=0.6-0.7 A, ut i is', b 't not so clear as in the Woods-

N =3000 the su~ershell structure is clear-Saxon case. At —1
1 seen with a node at k =0.75 Ay seen

h
'

tions of the level densities semi-We examine these varia ions
11 . The semiclassical expression (3.3) is stil va i

th th t 1provi e a'd d that the eigenenergy is higher than
= —5.4 eV). In the fol-(R =0) point of the potential (= —. e

lowing we focus on the Fermi-energy region (= —.0

The num er o sib f single-turn classical close orbits is
r than in the Woods-Saxon case, as shown in a elarger t an in e

II. This will make the interference of amp
'

litudes associ-I . is wi

icated. We thereforeate wi cd with closed orbits more comp icate . e eI =3,4, 5) instead oftake into account three orbits (

two. The action 8'~ is defined y q.b E . (3.7), and the
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0.0 0.1

I I I I

0.9 1.002 0.3 0.4 0.5 0.6 0.7 0.8
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FIG. 7. Single-particle level densities
'' '

s in the wine-bottle po-
e

' ' %=1000 2000 and 3000 for (a), (b), and (c), respec-tential with X=
tively.

X &200
200~ %&300
300& X & 600
600& %&900
900& %&1500
1500~ X & 2500
2500~ X

2, 3,4, 5, ~
2, 3,4, 5,6, ~
2, 3,4, 5,6, 7, ~
2, 3,4, 5, 6, 7, 8, 00

2, 3,4, 5,6, 7, 8, 9, 00

2, 3,4, 5, 6, 7, 8, 9, 10, 00

2, 3,4, 5, 6, 7, 8, 9, 10, 11, ao

TABLE III. Existing single-turn closedlosed orbits in the wine-

bottle potential. See caption of Table I.

Number of atoms
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FIG. 8. The action differences in the wine-bottle potential;
6 fY34 between the triangular and square orbits (upper solid

curve), and 58'45 between the square and pentagon orbits
(lower dotted curve).

differences are defined as 6 W34 W3 W4 and
AW45= W4 —W5. As explained in Sec. III, when 68'is
an integer the interference is destructive, when 6 W is a
half-integer it is constructive.

The action differences are shown in Fig. 8. The upper
curve is for 6 W34 It should have the dominant effect on
the supershells. The quantity 6 W34 is 1.5 at N = 800 and
2.5 at N =3100, at which mass numbers the interference
is thus expected to be constructive. This prediction
agrees with the quantum-mechanical results. [cf. Figs.
7(a) and 7(c)]. The value of b &34 is, on the other hand,
2.0 at N = 1600 suggesting destructive interference. The
lower curve in Fig. 8 shows b W45, which also becomes
1.0 at N =1600. Since the curve of 6W45 is very flat, the
destructive interference of the square and pentagon orbits
extends into the region 1000&N~2500. At N=1600
both of the interferences of the M, =3 and 4 orbits and
M, =4 and 5 orbits are destructive, but this also means
that the interference of the M, =3 and 5 orbits is con-
structive. This complicated situation may be responsible
for the obscuration of the supershell structure at
N =2000 [cf. Fig. 7(b)].

VI. EFFECT OF FINITE TEMPERATURE
ON SHELL STRUCTURE

In the molecular beam investigations of metal clusters
it appears that the clusters are being studied at tempera-
tures in the range of order 100 to 1000 K. In this range
there are a number of different effects that will attenuate
the energetic consequences of electronic shell structure.
We shall in the following briefly consider (a) the thermal
distribution of occupation probabilities for the electronic
levels, (b) the scattering of electrons on the fluctuations of
the positive ions, and (c) the eFect of the thermal distri-
bution of cluster shapes on the spectrum of electronic ei-
gen values.

(a) The diffuseness of the Fermi distribution at T&0
implies an evening out of the shell structure effect of elec-

tronic binding energies. This effect has been extensively
discussed in connection with the studies of shell structure
in excited nuclei (see, for example, Ref. 10, p. 607}. The
shell structure is associated with a "bunching" of elec-
tronic eigen values on an energy scale of order
Ace,&-Ef IN' (see Fig. 2). Thus, at temperature T the
shell effect will be significantly reduced for cluster sizes
exceeding

3

T
(6.1)

(b) A simple estimate of the electronic scattering on the
fluctuations in the distribution of the positive ions can be
based on the observed electrical resistivity p of the bulk
metal. From the Drude formula we obtain the scattering
lifetime

Pl

e np
(6.2}

where m, e, and n are the mass, charge, and number
density, respectively, for the electrons. Since the high-
temperature resistivity of the metal (in both the liquid
and solid forms) varies approximately linearly with the
temperature the smoothing of shell structure due to
scattering has a similar temperature dependence as that
resulting from the distribution of occupation probabili-
ties. Taking, for example, the observed high-temperature
resistivity of Na we have

p=3.0X10 T Qcm, (6.3)

which implies a damping width I for each electronic
level

(6.4)

with

C -NEf (6.6)

for configurations in the neighborhood of closed shells.
Thus at finite temperature we expect fluctuations in P of
order

1/2

(6.7)

These fluctuations are essentially static as compared with
the characteristic periods in the electronic motion. In the

Thus the scattering of the electrons on the positive ions
implies smoothing out of the electronic shell structure
effects and limitation on cluster size that is numerically
very close to the values (6.1) resulting from the distribu-
tion of occupation probabilities.

(c) For small clusters and low temperatures it is neces-
sary to consider the effect on the shell structure resulting
from the thermal fluctuations in the shape of the clusters.
For small amplitude deviations from spherical shape we
can expand the total energy of the electronic system in a
power series in deformation parameters P,

(6.5)
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presence of static deformations particle orbits that were
degenerate at P=0 are spread out over an energy interval
of order

TEf
b,E-(bp)Ef— X

1/2

(6.8)

which gives a crossover at

Ef
T

(6.10)

It appears that most studies of metal clusters carried out
so far have involved temperatures of order a few hundred
K and thus the crossover in these experiments would be
at N* —10'.

VII. SUMMARY

We have investigated shell and supershell structures in

Na clusters. We assume a mean field for the valence elec-
trons and simulate the mean field by two types of poten-
tials (Woods-Saxon and wine-bottle potentials). In the
Woods-Saxon potential the supershell structure is clearly
recognized in the calculated level density of each cluster.
Semiclassical consideration supports the interpretation of
the supershell structure as coming from interference of
amplitudes associated with triangular and square orbits.
The shell part of the total binding energy for each cluster
is also calculated as a function of the atom number N.
The supershell structure is clearly reflected in the binding
energy.

The effect of the energy shifts (6.8) will be more impor-
tant in smearing out the shell structure than the thermal
damping effects discussed above if

(6.9)

For the wine-bottle potential the supershell structure is
also recognized in the level densities. But the nodes of
the supershells appear at different wave numbers com-
pared to the Woods-Saxon case. Moreover, the super-
shell pattern is not always a simple beating pattern of two
waves. The reason for this complexity was investigated
semiclassically, and it was found that other classical or-
bits (especially the pentagon orbit) have non-negligible
contributions to the level densities in addition to the two
most important orbits.

Although the Woods-Saxon and the wine-bottle poten-
tials are similar to each other in shape, they produce level
densities which contain different supershell structures.
This means that the supershells are very sensitive to the
details of the potential shape. The exact shell closings
(magic numbers) are also sensitive to the potential shape.

We have also briefly considered thermal effects which
tend to smooth out the shell-structure phenomenon. At
the present time it does not appear that these effects will
obscure the consequences of shell structure for cluster
sizes up to several thousand atoms. There is an interest-
ing crossover in the dominant mechanism for damping of
single particle motion that is expected to occur for cluster
sizes of order 100 atoms.
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