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The phenomenon of power law decays in molecular beams is
reviewed. The transition from a canonical to a microcanonical
description of the decay is analyzed, and the appearance of the
power law decay derived. Deviations from a power law often
contain information on parallel competing processes. This is
illustrated with examples where thermal radiation or dark
unimolecular channels are the competing processes. Also
corrections to the power law due to finite heat capacities and
from nonideal energy distributions are derived. Finally, the
consequences for the interpretation of action spectroscopy data
are reviewed. © 2020 The Authors. Mass Spectrometry Reviews
published by Wiley Periodicals, Inc. Mass Spec Rev
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I. INTRODUCTION

Molecular beams represent the cleanest method to study the
structure of molecules and clusters due to the absence of
interactions with substrates, which will unavoidably modify the
properties of deposited particles, often in less than perfectly
understood ways. For clusters, molecular beam studies are of
particular importance because these species are thermodynami-
cally unstable and must be produced on the spot where they are
investigated. Both reasons have rendered molecular beam
studies extremely important for cluster science, in spite of the
fact that a number of applications are aimed at the use of
deposited clusters, with catalysis as a prime example (Ishida
et al., 2020). The power of molecular beam studies has been
demonstrated by the discoveries of shell structures, both of the
geometric packing type (Echt, Sattler, & Recknagel, 1981), of
electronic shell structure (Knight et al., 1984; Katakuse
et al., 1985), and of the fullerenes (Kroto et al., 1985).

Molecular beams come with some special features when it
concerns the thermal behavior of both clusters and molecules.
The principal reason is that the components of molecular beams
are decoupled from the thermalizing heat bath that is necessary
to describe a system as canonical. Although the production of

clusters can often be described in terms of canonical
equilibrium or quasi‐equilibrium processes, once the particles
leave the region of production and move into the ultrahigh
vacuum sector of a molecular beam device, contact to the
environment is reduced to a very occasional, and usually
destructive, collision with a residual gas molecule.

Systematic studies of these special molecular beam features
have produced diagnostic tools for a range of thermal phenomena
of clusters. The purpose of this review is to describe how the
special beam features arise and how they find applications in
thermally activated unimolecular decays, including emission of
electrons and photons in thermal processes.

These aspects are by now well established experimentally,
primarily by work at ion storage rings (Andersen et al., 1996, 2001;
Hansen et al., 2001; Tomita et al., 2001; Andersen et al., 2003a;
Andersen, Heber, & Zajfman, 2004; Fedor et al., 2005;
Toker et al., 2007; Froese et al., 2011; Lange et al., 2012; Toker
et al., 2012; Martin et al., 2013; Menk et al., 2014;
Martin et al., 2015; Breitenfeldt et al., 2016; Hansen et al., 2017b;
Ji et al., 2017; Martin et al., 2017; Anderson et al., 2018; Bernard
et al., 2019; Martin et al., 2019), occasionally in a form where other
channels are present, but also at single pass devices such as time‐of‐
flight mass spectrometers (Hansen & Campbell, 1996; Hansen &
Echt, 1997; Ferrari et al., 2015; Hansen et al., 2017a; Ferrari
et al., 2018a, b), and here the focus will be on the theoretical aspects.

The remainder of the paper contains a detailed discussion
of the exponential decay frequently considered a paradigm for
thermal decays, and demonstrate that there are significant limits
to its applicability. This is followed by a derivation of decay
rates for hot systems (molecules, clusters and nanoparticles) in
vacuum, which introduces the 1/t dependence. The following
section analyzes cases where corrections to the leading order 1/t
decay rate are needed and provides those. After this, a section
describes the effect of dark competing channels, and the paper
ends with a description of the consequences for the analysis of
action spectroscopy data.

II. LIMITS OF EXPONENTIAL DECAY

The exponential decay is a standard representation of statistical
decays of quantal and thermal nature in both physics and
chemistry. In spite of its frequent use, it applies only to a very
special class of situations. Exponential functions represent decay
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rates when systems (molecules, nuclei, etc.) decay out of a single
state or, more generally, out of a collection of states with the same
decay constant. The situation is realized in the decay of nuclei that
disintegrate by the weak nuclear interactions from some very long‐
lived state which is effectively an eigenstate of the Hamiltonian
describing the system (Pais, 1988). This is perhaps the simplest
manifestation of the decay of a single state.

Also thermally activated processes may proceed exponen-
tially, although the setting is very different from that of nuclear
disintegration. Chemical reactions that proceed over an energy
barrier in thermal processes have rates that depend strongly on
the internal energy present in the reacting systems. This very
well‐known fact is reflected in the theories of unimolecular
reactions that have been developed during the last century, and
it is the basis of the empirical relationship between reaction rate
constants and the temperature that was proposed by Arrhenius
more than a century ago (Arrhenius, 1889).

For thermally activated processes, an exponentially decaying
state requires an ensemble of molecules with an internal energy
distribution that is independent of time, apart from the
exponentially decreasing overall amplitude. For gas phase systems
such distributions may be maintained by intermolecular collisions.
Radiative equilibration is possible and can be included on an
equal footing with collisions in the description, although only a
few examples of a dominating radiative equilibration mechanism
that lead to complete equilibrium distributions have been reported
so far for lab experiments (O’Connor et al., 2016; Schmidt
et al., 2017). As an energy source for beams, absorption of
ambient radiation provides an important mechanism for dissocia-
tion of loosely bound molecules and clusters on long time scales,
see e.g. (Niedner‐Schatteburg & Bondybey, 2000; Dunbar, 2004;
Rahinov et al., 2016). The phenomenon is known as blackbody
infrared radiative dissociation (BIRD).

This mechanism and collisional (re‐)equilibration both have
the potential to ensure that decays will not completely deplete the
high energy tail of the distribution, which is the part of the
distribution from which the decays occur. Re‐equilibration will
cause the balance between depletion and repopulation to reach a
steady state, which will make the decay exponential. The single
quantum state of the nuclear decay is then replaced by the entire
thermal, time invariant excitation energy distribution, which acts
as, and indeed is, a single decaying state in thermal decays.

An obvious question for the quantitative description of
unimolecular decays in a nominally canonical thermal equili-
brium is what requirements must be fulfilled by the re‐
equilibration process to ensure that a decay can be represented
by the rate constants pertaining to an actual canonical
equilibrium. Specifically, what values must a re‐equilibration
rate constant take to make the canonical energy distribution
relevant for calculating rate constants? As this question is
closely related to the question of the decay rates in the limit of
no equilibration, this will first be examined.

The gas phase unimolecular reactions that will be
considered here can be described as

→ +A B C, (1)

with a rate constant which depends on the excitation energy, E ,
of A:

= ( )k k E . (2)

Rotational degrees of freedom can be disregarded for the present
purpose. The species B C, can be molecules, atoms or electrons.
Their precise nature is irrelevant for the considerations that follow
here, as long as the reaction is thermally activated, i.e., that it
requires that some subset of the internal degrees of freedom are
elevated above a threshold, Ea, for the reaction to proceed.

In canonical thermal equilibrium at temperature T , the
distribution of excitation energies in the reactant species A is
given by its vibrational level density (density of states) ρ ( )E , as

ρ
( ) =

( ) − /

P E E
E

Z
Ed

e
d ,e

E T

(3)

where Z is the canonical partition function:

∫
∞
ρ= ( ) − /Z E Ee d .E T

0
(4)

Boltzmann's constant is set to unity, which is simply a choice of
unit system. Energies and temperatures are measured in identical
units, and heat capacities and entropies are dimensionless.

For any process that occurs with a rate constant significantly
below the collision frequency in the gas, the reaction will be of
activated nature and will occur predominantly from the high
energy tail of the distribution of Equation (3) due to the strong
energy dependence of the k in Equation (2) in this type of
reactions. The Arrhenius formula pertains to such energy
distributions. To see how the formula appears, represent the
involved rate constant in terms of the level densities of the
reactant, ρ ( )E , and the product, ρ ( )Ep , as

≈ ω
ρ

ρ
( )

( − )

( )
k E

E E

E
,

p a
(5)

with ω a frequency factor, and Ea the activation energy of the
process. The appearance of the ratio of level densities in this rate
constant follows from detailed balance. See e.g., Weisskopf, 1937;
Brink & Stringari, 1990; Hansen, 2018b, where also examples of
the detailed balance expression for ω can be found. Here it will
set to a constant. These matters are discussed at length in
chapter 5 of Hansen (2018b) to which the interested reader is
referred for more details. The salient point here is that a number
of details provided by more accurate theories of unimolecular
decay rates will not appear in the ensemble averages that are the
core of the material presented here, and it would be misleading to
elaborate on such details. A number of different, relevant
corrections to the expression are discussed below, though (see
Eq. (35) and the text following that), and will be included after
the theoretical baseline has been established.

For the schematic level densities

∝ρ ( )E E ,s (6)

corresponding to +s 1 classical harmonic oscillators, the rate
constant becomes

⎜ ⎟
⎛
⎝

⎞
⎠ω( ) =

−
k E

E E

E
,a
s

(7)

This is close to a realistic description of thermionic emission
rate constants where the number of vibrational degrees does not
change during the process, and this very simple expression
allows to focus on the essential points, although it should be
stressed again that Equation (7) does not apply as a universally
valid description of all aspects of unimolecular decays.
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The rate constant for an equilibrium energy distribution is
given by

∫
∞

( ) = ( ) ( )k T k E P E Ed .e
0

(8)

(The same symbol is used for both the rate constant as a
function of temperature and of energy, but this abuse of notation
should not cause any confusion.) With Equation (5) and the
expression for the population, the rate constant is calculated to

∫

∫

∞

∞

ω
ρ

ρ

ρ

ωρ

ω

( ) =
( − )

( )

( )

= ( − )

=

− /

− /

− /

k T
E E

E

E

Z
E

E E
Z

E

Z

Z

e
d

e
d

e ,

p a E T

p a

E T

p E T

0

0

a

(9)

where Zp is the product partition function. Both partition
functions in the expression refer to the internal degrees of
freedom. For systems where the thermal excitations are carried
predominantly by vibrations and where the geometric averages
of the vibrational frequencies of precursor and product are the
same, ω , their ratio is equal to

⎜ ⎟⎛
⎝

⎞
⎠

ω
=

ℏZ

Z T

p
3

(10)

in the classical (high temperature) limit. At lower temperatures
the ratio is closer to unity. In either case, the variation with
energy is relatively slow, and whether or not one wants to
include this into ω or not is partly a matter of taste. Apart from
these qualifications, Equation (9) is the Arrhenius formula.

In the absence of a re‐equilibration mechanism, the decay
will proceed in time by slowly eroding the high energy end of
the distribution in Equation (3). The energy distributions at
some measurement time, t , defined as the time elapsed after the
ensemble has been created, will then be given by

ρ
( ) =

( ) − /
− ( )P E t E

E

Z
E; d

e
e d .

E T
k E t (11)

Figure 1 shows the energy distributions, initially generated with a
temperature of 1500K, that remain after t= 1 μs, 1ms, and 1 s, for
a molecule decaying with the schematic rate constant given by

⎜ ⎟⎛
⎝

⎞
⎠( ) =

−−k E
E

E
10 s

3 eV
,15 1

20

(12)

corresponding to the expressions in Equations (5) and (6) for
21 harmonic oscillators. The depletion shown in Figure 1 leads to
an approximate power law decay with a power of −0.89 in this
model case, as illustrated in Figure 2. The precise value of the
power is influenced by the initial energy distribution, a question
that will be discussed in detail below, but the nonexponential
decay is a robust feature of this and similar situations.

Adding a re‐equilibration mechanism to the energy
distributions in Figure 1 provides a continuous repopulation
of the high energy, decaying parts of the distribution. With a
simple description of the (re‐)equilibration it can be modeled as
a reshuffling of the energy distribution with a rate constant
denoted ke. A realistic description is considerably more
involved and is the topic of active research (King &
Barker, 2019; Lendvay & Schatz, 2019; Robertson, 2019), but
the simple description used here will make the point. Including

the depletion due to the energy dependent reaction rate constant
gives a time development for the energy distribution ( )P E t;s of

( )
= − ( ) ( ) − ( ( ) − ( ))

P E t

t
k E P E t k P E t P E t

d ;

d
; ; ; ,s

s e s e (13)

where the time dependence of the equilibrium distribution
Pe amounts to a time dependent normalization constant.
Normalization of Pe to the same value as Ps ensures conservation
of mass in the re‐equilibration process.

Figure 3 shows the numerically calculated temporal devel-
opment of the ensemble average rate constant of the model system
for three values of the equilibration constant, ke, and identical
values of all other parameters. Note that the quantity plotted is the
average rate constant in the remaining population versus time, and
not the population nor the decay rate. The horizontal sections of
the curves thus represent exponential decays. As the ensembles
generated at different times by Equation (13) are not those of
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FIGURE 1. The canonical energy distribution at time zero (black, full
line), and as depleted at t = 1 μs (red, dashed line), 1 ms (blue, dash‐dotted
line), and 1 s (magenta, full line). The decayed fractions are 0.4%, 3%, and
7% at the three times mentioned. The inset shows the same data on a linear
scale. [Color figure can be viewed at wileyonlinelibrary.com].

FIGURE 2. The decay rates calculated with Equation (11) at 1 μs, 1ms, and
1 s, corresponding to the distributions shown in Figure 1. The strongly bending,
red curve is the exponential decay fitted from the first two points (note the
double‐logarithmic scale). The straight line is a fit of a power law with the
exponent −0.89. [Color figure can be viewed at wileyonlinelibrary.com].
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thermal equilibrium, the average rate constant is also not the
thermal average, i.e., ⟨ ⟩ ≠ ( )k k T .

Two features are immediately noted from the curves. The
first is that there is a long transient before the exponential decay
is established, and that the duration of this depends strongly on
the value of ke. The second is that the measured rate constants,
given by the plateaus at long times, also depend strongly on the
value of ke. The two observations are clearly related; the smaller
the re‐equilibration rate, the later in time the steady state will
appear and the smaller therefore also the observed exponential
decay constant. At very short time, the curves coincide with the
Arrhenius value ω( ) = (− / )k T E Texp a , as expected, because
no decay has taken place and the energy distributions are still
canonical.

To describe the long time horizontal parts of the curve
where decays are observed to be exponential, a stationary
energy distribution state with an overall exponential decay can
be used as an Ansatz for the energy distribution ( )P E t;s . Both
this and the normalized equilibrium distribution are decaying
exponentially. It is therefore possible to extract the exponential
time dependence from both and write the two distributions as

( ) = ( ) ( ) = ( )− ′ − ′P E t ap E P E t ap E; e , ; e ,s s
k t

e e
k t (14)

where the factor a incorporates the accumulated effect over time
of the transient behavior, and hence is not necessarily equal to
unity, and p p,s e are both normalized to unity (this makes pe
equal to ( )P Ee in Eq. (3)). The parameter ′k , unknown at this
point, is the decay constant one measures. Inserting these two
populations into Eq. (13) and canceling factors gives

− ′ ( ) = − ( ) ( ) − ( ) + ( )k p E k E p E k p E k p E .s s e s e e (15)

Integrating over the energy immediately gives

∫
∞

′ = ( ) ( )k k E p E Ed .s
0

(16)

Rearranging Equation (15) gives the energy distribution that is
required to calculate this integral:

( ) =
( )

( ) + − ′
p E k

p E

k E k k
.s e

e

e

(17)

Combining Equations (16) and (17) provides an equation for the
determination of ′k ;

∫
∞

′ =
( )

( ) + − ′
( )k k

k E

k E k k
p E Ed .e

e
e

0
(18)

A somewhat similar expression is given in (Malpathak &
Hase, 2019). The differences from this work are that their ke is
identified with a gas collision frequency, which seems an
unnecessary assumption, and that ′k is absent from the
denominator in the integrand.

Equation (18) is the key equation that describes the value
of the observed rate constant ′k in the steady state exponential
decay. The equation generally does not lend itself to easily
determined closed form solutions, but some properties can be
extracted. The value ′ =k ke is a solution to the equation.
However, this value leads to both mathematical inconsistent and
unphysical distributions. This is seen by introducing this
solution into Equation (17) and noting that ( )k E is identically
zero below the threshold given by the activatio energy. For
these energies, ( )p Es becomes infinite over a finite interval.

Another solution exists, as inspection of the left vs. the
right hand side of Equation (18) shows, because the curves
representing the two sides will in general cross at a value of
′k below ke. We will not go into details of the behavior here,
but just point out that considerations of the behavior of these
solutions will show that we have the Arrhenius limit
≈′ ( )k k T for low temperatures and the high temperature

limit ≈′k ke. These are also the expected limits, because at
high temperatures the bottleneck for decays is not the
intrinsic rate constants ( )k E , but the rate of reheating of
the high energy part of the distribution. In other words, in the
heating sequence of a molecule M leading to decay,

→ →( < ) ( > ) ( )M E E M E E M fragmented0 0 , where the en-
ergy E0 is defined as ( ) = ′k E k0 , the speed of the first reaction
is the rate defining. Conversely, at low temperatures the last
rate is the defining. The high and low temperature limits are
then those for which most of the energy distributions are
respectively above or below the energy E0. In terms of
thermally average rate constants k , the two limits are ≫ ′k k
and ≪ ′k k .

The model system's numerically calculated distribution ps
distribution for T= 1500 K is shown in Figure 4, together with
the equilibrium distribution, pe.

Figure 5 shows the numerical solution of Equation (18) for
= −k 10 , 10 , 10 se

3 6 9 1, for a range of temperatures. It is
abundantly clear that the rate constants are strongly influenced
by the finite value of the re‐equilibration constant already for
= −k 10 se

6 1, and even more so for the lower value of ke, where
the measured rate constants can be wrong by an order of
magnitude or more, even at temperatures where it is orders of
magnitude smaller than the re‐equilibration constant.

A note on the value of the re‐equilibration constants used
here is in place. In a gas with a thermal speed of v, a collision
cross section σ , and a density of N/V, the collision frequency is

σ=f v
N

V
. (19)
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FIGURE 3. Ensemble averages of the rate constants in simulated energy
distributions with the three re‐equilibration constants given in the frame and the
rate constant given in Equation (7). Horizontal lines correspond to exponential
decays. The bold horizontal line just below −10 s5 1 is the Arrhenius decay
constant. The simulations were terminated when 5% of the initial abundance
was left. The bulk parts of the decays occurs during the exponential decay
phases. [Color figure can be viewed at wileyonlinelibrary.com].
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With a numerical example using a temperature 1500K, a pressure
of one atmosphere, the mass 100 u, the cross section 100Å2, and
the ideal gas law to calculate the molecular density, the collision
frequency f is on the order of ~ × −f 2 10 s9 1. But for an activated
process, this is not the re‐equilibration time constant, which is far
smaller. The bulk part of the energy distribution is located around
the equilibrium mean thermal energy. To move such an energy
into the decaying part of the distribution requires a minimum
number of collisions, nmin, equal to the relevant energy difference
divided by the average energy transfer per collision.

For the example with an activation energy of 3 eV, the
absolute minimum amount needed to fragment is this threshold
energy. Subtracting the thermal energy at the assumed
temperature of 1500 K means 2.3 eV needs to be transferred
to the molecule by collisions. With an energy transfer of
1500 K, equal to 0.13 eV, per collision, we get an order of
magnitude estimate equal to ∼ =n 17min

2.3 eV

0.13 eV
, where the

denominator is the thermal kinetic energy.

As the energy transfer process is statistical, effectively a
random walk, a better estimate of the average number of collisions
required to induce decay is given by the square of this number;
~n nmin

2 . The estimate of the value of ke for the collision frequency
considered is therefore closer to ∼ × −k 6 10 se

6 1 than to the more
than two orders of magnitude larger collision frequency.

The approximate nature of this estimate should be stressed.
A more precise estimate than this would require a more detailed
study (see e.g., Smith, 1997; Houston, Conte, & Bowman, 2014;
Matsugi, 2018, 2019 for numerical studies).

The conclusions of this simple model is that the re‐equilibration
constant plays an important role in determining observed decay
rates, even in the exponential regime, and that in the absence of any
significant re‐equilibration mechanism, the exponential decay fails
completely and must be replaced by another description.

III. DERIVATION OF THE 1/T DECAY RATE

It is clear from the preceding section that thermal decays will in
general not be exponential even if energy distributions are
sampled from distributions that are initially canonical. It is also
clear that even if a state with exponential decay is eventually
reached, the latency time increases with the decrease of the re‐
equilibration rate. In the limit of no re‐equilibration, the
transient part of the curve is the only part observed.

The shape of this part of the curve is already suggested in
Figure 2. For a general derivation of the shape of the infinitely
long transient part of the curve, consider the expression for the
decay rate, i.e. the negative derivative of the abundances, I , with
respect to time,

= −R
I

t

d

d
, (20)

where I is the integrated form of the energy‐specified density of
internal excitation energy, ( )g E t; :

∫≡
∞

( )I g E t E; d .
0

(21)

The rate defined in Equation (20) is the one measured in e.g.
storage rings. The time‐integrated form is measured as the so‐
called metastable decay fraction in single pass devices such as
mass spectrometers. In the absence of re‐equilibration the energy‐
specified abundance can be factorized into an initial distribution,
( )g E , and a time dependent survival probability, ≤P 1sur as

( ) = ( ) ( )g E t g E P E t; ; .sur (22)

The salient point of this separation is that the survival fraction
Psur depends on energy and that for statistical decays, it can be
written as the energy‐specified exponential decay:

( ) = (− ( ) )P E k E texp .sur (23)

As before, t is the time between the creation of the distribution
( )g E in the source and the time of measurement. Using

( )P g E t, ;sur and I with Equation (20) gives the decay rates

∫∝
∞

( ) ( ) ( ) (− ( ) )R t g E k E k E t Eexp d .
0

(24)

In the first, simplest description, ( )g E can be assumed
constant. The integrand of Equation (24) has a maximum
emission rate as a function of energy given by

Mass Spectrometry Reviews DOI 10.1002/mas 5

FIGURE 4. The equilibrium energy distribution for the model system of
Equation (12) (dashed line), and the modified long time energy distribution
ps (full line) for = −k 10 se

6 1, shown in the energy range where the latter is
depleted by decay. The difference between the two is responsible for the
difference of more than a factor 20 between the Arrhenius value and the
asymptotic curve for the same ke‐value used in Figure 3. The inset shows
the product of the rate constants and the two distributions for the same
abscissa values, for an illustration of the reason for the large effect that
occur out of the small difference between the two distributions.

FIGURE 5. The rate constants calculated self‐consistently with Equation
(18) for the re‐equilibration rates =k 10 , 10e

3 6, and −10 s9 1 (circles, bottom
to top). The full, curved line is the Arrhenius rate constant, and the
horizontal lines are the associated values of ke.
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⇒( ) (− ( ) ) = ( ) =
E
k E k E t k E t

d

d
exp 0 1. (25)

Hence the decay rate will have its peak value at (− )/texp 1 . It is
noteworthy that this result is independent of the expression for k .
The only assumption made is that the derivative of k with respect
to energy is non‐zero. This is valid most of the time, but melting/
freezing can invalidate this assumption. See below for an example.

Some examples calculated numerically are shown in Figure 6.
The rate constants for the six curves in the figure are calculated
with variations of the quasi‐realistic expression previously used,
which represents variations of the approximate formula for the
decay of a harmonic oscillator cluster of nine atoms:

⎜ ⎟
⎛
⎝

⎞
⎠
⋅

( ) =
−−

−

k E
E E

E
10 s ,q a1

3 9 7

(26)

where q is a parameter which provides a simple parametrization
of the rate constant. The figure demonstrates very clearly that
the peak values of the rate constants are completely independent
of these decay constant parameters.

As it is clear from Equation (23) the nonexponential decays
that will be derived below based on that equation do not reflect a
non‐statistical decay of individual clusters. A ( )g E which is
sufficiently close to a delta function will obviously still reproduce an
exponential decay, at least when only a single decay is considered.
A chain of sequential decays will not be exponential even if initiated
from a single size with a delta function energy distribution.

The result that the energy‐specified decay rate peaks at
(− )/texp 1 suggests that the total decay rate has a similar time

dependence. The total rate can be found by integration over the
distributions analogous to the ones shown in Figure 6. As an
alternative it will here be calculated with a approximate rate
constant to show that a power law appears naturally and that this
result does not depend on the rate constants' precise functional
forms. This is followed by a more detailed calculation to derive
the factors that multiply 1/t.

In the first step the rate constant is approximated for the
relevant and fairly limited energy interval as

( ) = α ( − )k E k e ,E E
0

0 (27)

where α is a positive but so far unspecified constant. This form
is chosen to represent any rate constant that varies sufficiently
rapidly with energy. Although a number of different expressions
for unimolecular rate constants have been proposed, they all
share this rapid variation with energy, and it must be considered
a safe parametrization. The relevant energies here are the ones
for which ∼( ) /k E t1 . This translates into a fairly low energy
per degree of freedom and a rather steep curve of k versus E .
Even for experiments on long time scales will the difference in
energy at the start and the experiment therefore be fairly small.

The energy for which the decay rate ( ) (− ( ) )k E k E texp
peaks, Em, is found by equating Equation (27) to 1/t and solving
for E:

α= − ( )−E E k tln .m 0
1

0 (28)

Crucially, this is also the energy that divides between the
systems with energies too low to have decayed and those with
too high energy to have survived at time t . The energy is time
dependent, and for broad and flat energy distributions the decay
rate is therefore proportional to the negative of the rate of
decrease of this energy:

∝ α( ) −
( )

= −R t
E t

t t

d

d

1
,m 1 (29)

where the constant of proportionality left out from the first equality
is the density of excitation energies, . The mutually dependent
choices of k0 and E0 cancel, and the result depends only on α.

Specifying the rate constant to find the value of α, Equation
(7) is applied here.

⎜ ⎟
⎛
⎝

⎞
⎠ω( ) = −k E

E

E
1 .a

s

(30)

To connect to the value of α, the logarithm of Equation (30) is
expanded in E . Using the energy given by ( ) = /k E t1 as the
expansion point results in the coefficient

α
ω

=
( − ( ) )

−
− /

E

s t1
.a

s
1

1 2
(31)

This makes the decay rate in Equation (29) proportional to
Ea, which has a straightforward dimensional interpretation; The
decay rate is proportional to the density of excitation energy,
( )g E , which has dimension of 1/energy. The only other

parameter of dimension that appears in the problem is Ea, and
consequently the rate must be proportional to ( )E g Ea .

The dependence on s is less easy to understand in the form
it appears in Equation (31). The following expansion will shed
some light on the question:

⋯

⋯

ω

ω ω

ω ω

− ( ) = −

= − ( − ( )/ + ( ( )/ ) / − )

= ( )/ − ( ( )/ ) / +

ω− / − ( )/t

t s t s

t s t s

1 1 e

1 1 ln ln 2

ln ln 2

s t s1 ln

2

2

(32)

As the dependence on frequency and time in this expression is
logarithmic, there is fairly little variation in the values of ω( )tln ,
and the range is typically limited to between 20 and 30. This
range holds for emission of both electrons (Andersen,
Bonderup, & Hansen, 2002) and atoms (Gspann, 1986; Hansen
& Campbell, 2004), although the values for electron emission
and for systems that are both small and very cold, such as small
helium droplets (Brink & Stringari, 1990), tend to be a little
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FIGURE 6. The product ( ) (− )k E ktexp at t= 100 μs for a rate constant
with different frequency factors and different activation energies. Although
the peak energies and the widths of the distributions are clearly different,
the peak values are seen to be identical and equal to the value (− )/texp 1 ,
which is indicated by the horizontal line.
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lower. For loss of small fragments with rotational degrees of
freedom, the ω increases due to the larger phase space of the
products and the logarithm can have values between 35 and 40
(Hansen, Campbell, & Echt, 2006).

For not too small values of s, second term and higher order
terms in the expansion can be ignored and the rate therefore
expressed as

∝
ω

( )
( )

R t
sE

t tln

1
.a

2
(33)

This is identical to the exact result one obtains for a rate
constant of the form ω( ) = (− / )k E E s Eexp a , i.e. equivalent to
an Arrhenius expression with the emission temperature
identified with E/s.

The expression in Equation (33) is derived for a specific
and somewhat idealized situation, and it is of interest to have a
more general expression. The generalization that will be applied
here consists in parametrizing the level densities of both
reactant and product as

ρ ( ) = ( + )E a E Ei i i
si (34)

where subscript =i r p, can denote either reactant (r) or product
(p). For the special case of harmonic oscillators, for example, the
value of Ei is the zero point energy of the oscillators in the high
energy limit. As such it gives the energy offset in the canonical
caloric curve ( ) = ( + ) −E T s T E1i i for either of the two
systems at the relevant temperature range. Similarly, +s 1i is
the canonical heat capacity, and ai related to the entropy, although
the connection is not as simple as that for the two other parameters.
The expression covers a lot more ground than just harmonic
oscillator systems, although it is still an approximate relation.

The more general expression for a rate constant in Equation
(5) then reads

ω( ) =
( + − )

( + )
k E

a E E E

a E E
.

p p a
s

r r
s

p

r
(35)

Relating this to the exponential form

≈ ω( ) ′ −
′

′k E e ,
E

T
a

(36)

requires the calculation of the primed parameters that enter the
expression. As pointed out in (Hansen, 2018b) the definition of
the temperature and the assignment of a value to the frequency
factor are related and they cannot be determined without the
application of another criterion. The criterion that was applied
in (Hansen, 2018b) was that the caloric curve should be linear;

= ′ −E C T E .v 0 (37)

This choice was motivated by the desire to have the simplest
possible relation between excitation energy and measurement
time. This facilitates the description of decays and it provides
directly the interpretation of measurements of metastable
decays, for example. It does mean that also Cv and E0 need to
be determined. The somewhat lengthy calculation was reported
in (Hansen, 2015) and only the results will be given here. The
(re‐)defined quantities were found to be the following:

≡Δ ( + )/s s s 2,r p (38)

≡′ + −E E E E ,a a r p (39)

≡ ∕′ω ω( ) ′ [( + − )( + )]−Δ
a

a
E E E E E40 ,

p

r
r a r

s 2 (40)

≡ ( + )s s s
1

2
,r p (41)

≡ ω( ′ )G tln , (42)

⎜ ⎟⎛
⎝

⎞
⎠

≡

≈

∕ ∕( ) ( )′ − − ′ − +

− ′ + +
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E E

E
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s
E

1 e 1 e

1

2 6
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G s
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G s

r

a r

0
2 1

(43)

≡ ∕ ∕( )−− − −C
G

s
e 1 e .v

G s G s
2

2 (44)

Two of these results are of special interest. One is that the
activation energy of a process (Eq. (39)) is corrected by a value
equal to the difference between the energy offsets of the two caloric
curves involved. For harmonic oscillators, this corresponds to the
difference between the two zero point energies, ∑ ωℏ /2

j j . For
identical average frequencies,ω , and a decay by atomic evaporation,
this becomes a correction of ′ ω= + ℏ /E E 3 2a a . The other point is
that the effective heat capacity, which has the large cluster behavior

= − /C s G s12v
2 , reduces to zero faster than the number of

vibrational degrees of freedom when the cluster size is reduced.
In summary, the decay rate is then given by

∝
′

ω
( )

( ′ )
R t

C E

t tln

1
,

v a
2

(45)

where the parameters are given in Equations (39), (44), and
(40). This expression reproduces the simple interpretation of the
rate as the negative of the time derivative of the highest energy
in the ensemble:

∝
′

ω
( ) − = −

( ′ )
R t

E

t t

C E

t

d

d

d

d ln
.m v a (46)

In the following we will dispense with the primes, but the reader
should keep in mind the physical interpretation of parameters
extracted from experimental measurements. Figure 7 shows the
results of a series of simulations using Equation (24) with
different values of system parameters. The figure includes a
case of an energy distribution consisting of a sum of delta
functions spaced equidistantly with a 3 eV separation to
simulate photon absorption statistics.

A remark on the zero of time are in place. So far it has been
assumed to be equal to the production time in a source. This may
need to be modified when one observes the products of decay chains
of the form → → → ⋯+ ++ −X X X X X2N N N1 2 . Such decay
chains are typical for clusters produced in hot sources without forced
post‐production cooling. For clusters with sufficiently small heat
capacities, consecutive decays involve decay constants with widely
different values, with all but the last decay happening in a very short
time. In those cases, the accumulated time of all decays prior to that
of the measured cluster size can be ignored.

This simple approximation changes when consecutive
decay constants in a decay chain are not widely different.
This occur when heat capacities are sufficiently large. The heat
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capacity where this point is reached is the value (Hansen and
Näher, 1999)

≈ ω( )C tln .v
2 (47)

The size where this value is reached corresponds to clusters of a
few hundred atoms for harmonic oscillator heat capacities. For
clusters of this and larger heat capacities, the time consumed in
the initial decays cannot be ignored. A detailed analysis of the
energy distributions produced in ensembles of clusters above
such sizes shows that the power law decay appears also for
these. This behavior of large clusters is non‐trivial and
considerations involving energy distributions and any quantity
hinging on these distributions require considerations that differ
from those used in the main narrative of this work. Details will
take us too far astray and the interested reader is referred to
(Näher & Hansen, 1994; Hansen & Näher, 1999) for a detailed
analysis of the question.

IV. MODIFICATION OF 1/t RATES: INTRINSIC,
SOURCE PROPERTIES

The derivation of the power law decay is fairly general, and it has
been observed in a number of experimental studies, most often at
relatively short times (Hansen & Echt, 1997; Hansen et al., 1999;
Andersen et al., 2001; Hansen et al., 2001; Andersen et al., 2003a, b;
Tomita et al., 2003; Andersen, Heber, & Zajfman, 2004; Fedor
et al., 2005; Toker et al., 2007; Sundén et al., 2009; Froese
et al., 2011; Lange et al., 2012; Goto et al., 2013; Martin et al., 2013;
Najafian et al., 2014; Martin et al., 2015; Breitenfeldt et al., 2016;
Hansen et al., 2017b; Ji et al., 2017; Martin et al., 2017; Anderson
et al., 2018; Bernard et al., 2019). However, corrections may arise
to these results, both in the power of −1 and in the long term

behavior, caused by factors both intrinsic and external to the
decaying system. Below, the short term behavior will be
parametrized by replacing the power −1 by the parameter −p
and contributions to p calculated.

In this section the effects of deviations of ( )g E from a
constant will be treated, together with the effect of the
variations of the quantity ω( )tln (or ∕ω( )−t s1 ) jointly with the
heat capacity. These two effects are perturbations and will be
treated separately. In addition, the effect of a melting transition,
which represents a very different situation from the rate
constants of Equation (35), will be demonstrated with a
theoretical case study.

For decays on the microsecond time scales rates change as
a rule of thumb by a factor of 20 for each 10% change in
excitation energy. Equivalently, the factor ≡ ω( ′ )G tln 2

changes 15% over a time interval of a factor 10. This introduces
a small, albeit non‐zero time dependence into the denominator
in Equation (45). Also the heat capacity which appears in the
rate has a time dependence through its dependence on G. The
heat capacity in general depends on the temperature, or for the
microcanonical ensemble here, on energy. The energy in turn
depends on the time, because we are considering the decays
from the edge of the energy distribution, and this edge changes
with time. To account for these variations, p is calculated by
taking the double‐logarithmic derivative of the expression

∝R
C

G t
,v

2
(48)

with respect to t , using the Cv and G from Equations (42) and
(44). The resulting value is

⎜ ⎟⎛
⎝

⎞
⎠∕

= −
( )

( )
= − − +

−
p

R

t s

d ln

d ln
1

1
1

2

e 1
.

G s
(49)

For systems with large heat capacities, ≳s G, this reduces to

≈ − − −p
s G

1
1 2

. (50)

The last term on the right hand side is often the dominant
correction and is on the order of 5–10%. It is not a priori given
that a double‐logarithmic derivative gives a sufficiently constant
value to make the calculated corrections to the power −1
meaningful, but a numerical estimate shows that this is indeed
the case over a broad time interval. For examples, see Figure 7.

The calculation of this correction to p is facilitated by the
results on the heat capacities in Equation (44), but it should be
stressed that the result will be arrived at independently of this and
does not hinge on any definition of the temperature, as required.

There are a few other possible intrinsic effects that may
influence the value of p. One possibility is that vibrational
degrees of freedom are frozen in for the parts of the excitation
energy distribution that are sampled at long times. This will
effectively be a change of s with time. A very clear example of
this is shown by the measurements of the thermal electron
emission from −SF6 reported in Menk et al. (2014). The electron
affinity of the molecule is about 0.5 eV and together with the
long measurement time in the experiment, this sets a fairly low
value for the energy per degree of freedom. Although the
variation of E with time is logarithmically slow, the effect of the
decrease with time on the vibrational excitation is boosted
because it enters into the determination of the thermal
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FIGURE 7. Three pairs of simulated decay curves and a single 1/t curve
(dashed dotted). A pair of simulated curves consists of one curve calculated
with a numerical integration of Equation (24) (the solid line in all three
cases), and another curve calculated with Equation (45) with the Cv given
by Equation (44). The intensities are directly comparable in each pair. The
simulated and the calculated curves are almost identical, verifying the
quality of the analytical results. From below the parameters are Ea= 1 eV,
=s 30, ω = −10 s15 1, g(E)= 1/eV (red curves); Ea = 1 eV, =s 30,

ω = −10 s15 1, g(E)= 1/eV (blue curves); the reference 1/t dependence is
plotted as a dashed‐dotted line (black curve); Ea = 1 eV, =s 300,
ω = −10 s15 1, ∑ ⋅

∞
δ( ) = ( − )

=
g E E n 3eV

n 0 (magenta curves). The major
contribution to the deviation from the 1/t is the term ∕ ω− ( )t2 ln (see next
section). [Color figure can be viewed at wileyonlinelibrary.com].
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population. The population, in turn, is proportional to what is
effectively a Boltzmann factor, ω(−ℏ / )Texp , which varies very
rapidly when the effective temperature T decreases below the
vibrational frequency.

Another possible intrinsic effect is that the equivalent of
freezing occurs in the particle. The result of a maximum of the
rate of (− )/texp 1 also applies to rate constants that are
nonmonotonic functions of energy, although the additional
peaks that are generated by freezing may not reach the
maximum value. Around the melting point at least three more
or less resolved peaks will appear in a plot similar to Figure 6.

Figure 8 gives an example of a decay curve that will cause
such a behavior. The energy resolved rates are shown in
Figure 9 for a range of measurement times that place the
energies around the melting point.

The pileup of decays seen in Figure 9 is also seen in the
more directly measurable decay rate in the form of an enhanced

rate at the times where the decays occur from clusters with
energies around the freezing point. Figure 10 shows the decay
rate for such a situation. Curves such those in Figure 10 have
not yet been measured. As seen from the abscissa values, they
require that decay rates are measured over a wide range of
times. This is feasible with storage rings, in particular of the
cryogenic types, where storage times can reach thousands of
seconds. In the choice of cluster material due consideration
should be paid to effects of radiative cooling (see below).

Finally, the effect of the source should be considered. Even
if the excitation energies acquired in a source are sufficient to
induce a spontaneous decay, the excitation energy distributions
are rarely completely flat. This will affect the measured decay
rates. As this is an external input to the problem, it will vary
with the type and operating conditions of the source, as well as
the particle type. These effects will be included summarily with
a single parameter, b, in the description of the energy
distribution which is valid over a limited energy interval,

( ) =g E ae .bE (51)

The value of a is uninteresting in this connection. The decay
rate will be given by Equation (46) multiplied by the additional
factor ( )g E . The double‐logarithmic derivative gives for the
power

→
ω

+
( )

p p b
E C

tln
.a v

2
(52)

The value of b is not observed directly, as a rule. However, if
one observes the abundances produced by a cascade of decays
of a collection of clusters of different sizes, the energy
distributions represented by b can be related to the abundances
(see Hansen, 2018b). Ignoring size‐to‐size variations in Ea's, the
modification of p for the size N0 is calculated by dividing by Ea
and using the parameter ′b found from fitting the abundances
with the function

= ′( − )I ae .N
b N N0 (53)

Size‐to‐size variations in IN should be ignored in the fits of this
kind, and only the smooth part of IN vs. N should be used for
this purpose.
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FIGURE 8. The calculated atomic emission rate constant of a cluster of
56 atoms interacting with the Lennard‐Jones potential vs. cluster energy.
Both energies and rate constants are given in scaled units. The rate constant
is calculated by direct simulation of decays for points above =E 80. Below
that energy, the values are calculated as the detailed balance rate values.
The horizontal red, blue and magenta lines, for use with Figure 9, are
located at rate constants × ×1.1 10 , 1.9 104 4, and ×2.7 104. [Color figure
can be viewed at wileyonlinelibrary.com].

FIGURE 9. The energy resolved decay rate for the cluster with the rate
constants shown in Figure 8. The curves are calculated for the scaled times
(top to bottom) ×1.1 104 to ×2.9 104 in steps of ×0.2 104. The curves for
the times equal to the reciprocal of the three rate constants marked in
Figure 8 are rendered in the same colors and the open symbols. [Color
figure can be viewed at wileyonlinelibrary.com].

FIGURE 10. The calculated decay rate based on the simulated rate
constants shown in Figure 9. The inset shows the product of time and
decay rate.
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The result is then

→
ω

− ′
( )

p p b
C

tln
.v

2
(54)

Usually this is not a numerically important correction.

V. COMPETING CHANNELS

The power law decay finds its most important use when
decays are observed to deviate significantly from the 1/t
form. A condition for the power law to occur with the powers
calculated so far is that the observed channel represents the
main decay. Any major amount of decay through a parallel
dark channel will cause modifications, to the point of
converting the decay into a different functional form. Any
significant deviation from 1/t, viz. one that cannot be
assigned to an nonconstant energy distribution or a similar
minor effect, can therefore often be taken as indication of the
presence of a competing channel.

The most important type of such a dark channel is,
somewhat paradoxically, the emission of thermal photons.
Emission of thermal photons is an important channel in the
decays of molecules and clusters at long times, and the process
is attracting increasing attention as an essential part of the
description of decays in storage rings and similar devices
(Møller, 1997; Dahan et al., 1998; Jinno et al., 2004; Bernard
et al., 2008; Pedersen et al., 2015), where cryogenic techniques
are pushing storage times into the thousands of seconds regime
(Lange et al., 2010; Reinhed et al., 2010; Schmidt et al., 2013;
Nakano et al., 2017). It should be stressed that although power
law decays appear in their most insistent form in these types of
devices, there is no reason to suspect that they are not present
in, for example, single pass devices (Hansen & Campbell, 1996),
although the available dynamic time range in these instruments
often renders the specific time dependence difficult to disen-
tangle experimentally from a standard exponential decay.

The division of time scales into an early unimolecular
regime and a later radiative one is caused by the difference in
decay parameters for these two classes of decays. Unimolecular
decays have a frequency factor multiplying the ratio of level
densities which is essentially given as

ω
πσ

=
T m

h

8
,

2

3
(55)

where σ is the attachment cross section for the inverse process,
T the microcanonical temperature of the product particle/
molecule, m the mass of the small fragment lost, and h Planck's
constant. With sticking coefficients around unity, corresponding to
geometric cross sections, calculated frequency factors for atomic
cluster are in good agreement with those derived from vapor
pressure data of the corresponding bulk matter. Figure 11 shows
the comparison for a number of metallic elements for which the
vapor is predominantly composed of monomers. These values are
higher by about two orders of magnitude than the Debye
frequencies (also shown) which is often used in heuristic theories.

Equation (55) is derived from detailed balance considera-
tions. This also provides a frequency factor for the thermal
electron emission rate constant. The frequency factor is smaller
for electron emission due to the much smaller mass of the

emitted particle, although it is often boosted by the larger
capture cross section and occasionally by the higher tempera-
ture at which electron emission tends to be emitted, and it will
still be larger than the photon emission value.

The parameters of thermal radiation differ from those two
types of unimolecular decays in two respects. First of all the
activation energy is much smaller. The activation energy is the
energy of the lowest optically active excitation in the system. A
low energy of this state is necessary for the process to be
observed because also the frequency factor for photon emission
is smaller than the atomic emission ω's, which is the second
difference. The frequency factor is the Einstein A‐coefficient,
which takes values on the order of −10 s9 1 for typical electronic
transitions, but with a significant spread in values. In a
canonical situation the photon emission rate constant kph is, in
terms of A and the thermal population of the emitting state,
equal to the well‐known result

( ) =
−

ν

ν

− /

− /
k T A

e

1 e
.ph

h T

h T
(56)

In a microcanonical situation, this is modified to Andersen,
Bonderup, & Hansen (2002)

( ) =
−

ρ ν

ρ

ρ ν

ρ ν

( − )

( )

( − )

( − )

k E A
1

.ph

E h

E

E h

E h

2
(57)

(At negative energies, level densities are zero.)
With the lower values of both the frequency factor and the

activation energy, radiative cooling is bound to dominate the
decays at late times and cause a suppression of the unimolecular
decay in that time region (Andersen et al., 1996). The details of
the description of this suppression depend on the magnitude of
the emitted photons. The systematics of this behavior is
summarized in a recent review article (Ferrari et al., 2019),
and only a few points concerning the influence of thermal
radiation on decay rates will be taken up here.
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FIGURE 11. The comparison of frequency factors, calculated and
extrapolated from bulk vapor pressure, both at the same typical
temperatures (closed circles). The values are for surface areas corre-
sponding to a single atom. To get the value for a larger particle, multiply by

/N2 3 or by ( − ) + )/N 1 11 3 2, which often gives a little better precision. Also
shown are the Debye frequencies (open circles).
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For sufficiently small photon energies, emission of a single
photon is insufficient to cause a major change in the
unimolecular rate constant. In the other limit a single photon
emitted will quench any further decay. Here only the small
photon energy limit will be discussed. The large photon limit is
treated in (Ferrari et al., 2019).

In the small photon energy limit, the radiative cooling can be
considered a continuous process. We can then rewrite Equation
(24) by introducing a time dependence due to the radiation, in
addition to the time dependence on the exponential depletion. This
can in principle be done either by including time dependence in the
population, →( ) ( )g E g E t, or in the rate constants,

→( ) ( )k E k E t, . The latter approach will be used here. With a
leading order expansion of the logarithm of the rate constant in the
time since creation, one has

∕( ) = ( ) τ−k E t k E, , 0 e ,t (58)

where E is the energy the particle is created with, and τ is a time
constant, defined as

τ =− k

E
P

d ln

d
,em

1 (59)

where Pem is the emitted power. The expansion of the logarithm
of k and not of k itself is reasonable because of the strong
dependence of k on energy and its intrinsic non‐negative values.

In terms of the average photon energy νh , and the photon
emission constant kp, the power is

ν=P h k .em p (60)

If we stay with the parametrization in terms of a constant value
of τ , Equation (24) becomes

∫ ∫∝
∞

( ) ( ) ( ) τ− / − ( ) ′τ− ′/

R t g E k E Ee e d ,t k E t

0

e d
t t

0 (61)

where the exponential of the integral gives the surviving
fraction at the initial excitation energy E . All time dependence
is given explicitly, and the integral is easily calculated to give
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(62)

The last equality shows that ∕τ ( − )τ−1 e t acts as an effective
time in the integral, which can then be evaluated simply by
copying the previous, nonradiative result with the proper
substitution for the time. Including the pre‐integral exponential,
this converts the power law decay to a quasi‐exponential form;

∝
∕τ −τ

R
1 1

e 1
.

t
(63)

The analogous expression for larger photon energies is (stated
without proof),

∝
−

R
t

e
.

k tp
(64)

The expression in Equation (63) reduces to a −t 1 dependence for
short times, as required on physical grounds. At long times it
can be approximated by an exponential decay.

The nature of this exponential decay is different from a
standard type exponential decay, though, because here the
exponential decrease describes the time dependence of the rate

constant and not of the population. In fact, at long times, all decays
will have ceased but an amount of particles will have been
fossilized by the radiation. This is readily observed in storage
rings, for example, if the particles are reheated with a laser and
resume their decays (Hansen et al., 2001; Kono et al., 2018).

Emission of massive particles may also constitute dark
channels. As for photon emission, it will influence the decay rate if
it is the main channel, i.e. if the rate constant for this channel is the
highest of the two (or more) competing channels on the
measurement time scale. One such case is realized in the decay
of neutral C60 through the channels (Hansen & Echt, 1997)

→ ++ −eC C60 60 (65)

→ +C C C ,60 58 2 (66)

where only the time‐resolved electron yield of the first channel
is detected. With k k,e a the electron and the C2 emission rate
constant, respectively, the measured electron emission rate is
then given by

∫∝
∞

−( + )R k Ee d .e
k k t

0
e a (67)

Experimentally, the decays were produced by laser excitation
and the laser power was varied to ensure that ( )g E was flat. It
can therefore be left out from the considerations. If the electron
yield is dominant, the presence of ka in the exponential can be
ignored, and one then gets a standard power law decay. This is
not what is observed. The electron rate varies as

∝ −R t .0.65 (68)

The reduction of the absolute value of the power from unity can
only be understood as a consequence of the fact that the C2 loss
channel is dominant. We can therefore write the rate as

∫∝
∞

−R k Ee d .e
k t

0
a (69)

Expressing ke in terms of ka using exponential expressions for
both with a few simplifications, gives that

∝ ∕k k ,e a
EIE a (70)

where IE is the ionization energy measured to be 7.6 eV, and Ea
is the C2 loss activation energy. This gives a power law decay

∝ ∕−R t .EIE a (71)

Although the ionization energy was well known at the time
these experiments were performed, the C2 dissociation energy
was not. The measured power in this decay allowed a
determination of the value, which was in much better agreement
with the values produced in the fairly intensive work with
quantum chemical calculations that followed the discovery of
the Krätschmer‐Huffman method of production of macroscopic
amounts of the molecules. The value extracted was around
11 eV. With a few later adjustments to ±10.8 0.3 eV (Tomita
et al., 2003), this is now the generally accepted value.

VI. ACTION SPECTROSCOPY

Molecules, in particlular large molecules, are occasionally, and
clusters very often, found in so low concentrations that standard
absorption spectroscopy is not feasible. Although techniques
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such as cavity ring‐down spectroscopy will be able to render
absorption spectroscopy feasible in some situations, a more
convenient spectroscopic technique in cluster studies is action
spectroscopy. The principle of this method is to use the easily
measured loss of a part of a cluster, typically an atom, as a
signature for the absorption of one or more photons.

The use of this technique is widespread. For examples on
molecular ions, see Dunbar & Fu (1973), Drzaig & Brauman
(1984), Wetzel & Brauman (1987), Dunbar (1988), Willey
et al., (1991); for clusters, see Borggreen et al. (1993), Collings
et al. (1994), Hansen et al. (1999), Vogel, Herlert, &
Schweikhard (2003), Gilb et al. (2004), Kaydashev et al.
(2016); and for biomolecular ions, see Nielsen et al. (2001),
Andersen et al. (2005), Antoine & Dugourd (2013), Yao &
Jockusch (2013), Bellina et al. (2014), Harvey et al. (2015),
Wellman & Jockusch (2015), Xu et al. (2015), Milne et al.
(2016), O’Connor et al. (2017), Woodhouse et al. (2017).

The application of the technique requires that the quantum
yield of the decay process is not too low, and if absolute cross
sections are desired it should be known. When the action proceeds
via a thermal decay, the quantum yield clearly depends critically
on the photon energy. The situation is particularly critical at the red
end of a spectrum, where photon energies can be too low to induce
the signature decay, and for which a vanishing quantum yield can
erroneously be interpreted as a vanishing absorption cross section.
Although this problem of insufficient heating can to some extent
be bypassed with the use of the messenger molecule technique (see
below), it is still particularly severe for vibrational spectroscopy,
for which multi‐photon absorption is required to provide any yield
at all, and techniques have been developed for these experimental
conditions, taking into account factors such as the variation of the
cross section with internal energy etc. (von Helden, van
Heijnsbergen, & Meijer, 2003; Bakker et al., 2010). The problem
is most severe and also simplest to examine for one photon
processes, and in the following only this situation will be
considered.

The problem can be quantified and solved when the internal
excitation energy distributions are those that give rise to power law
decays. Experimentally, the assumption of a broad energy
distribution can be tested by measuring the spontaneously appearing
decay fraction and comparing with the results given above. To
summarize previous equations, the fractional amount of decay of a
mass‐selected particle should be given approximately by

⎛
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when the integrated yield between t1 and t2 is measured. The
intensities In and Id denote the number of non‐decayed and
decayed particles, respectively. If these measurements conform
to the calculated yields, the decay can safely be described as
statistical and from the broad energy distributions assumed here.

The problem of calculating the yield involves several
different experimental times, viz. the time between production
and measurement, the time lag between photon absorption and
the start of the recording of the decay, which may be but not
necessarily is zero, and the time where the measurement of the
metastable decay ends. If present, radiative cooling will also
have to be included in the analysis. We will assume here that
radiative cooling is not present. The case where it is present has

been treated in (Hansen, 2018a), to which the interested reader
is referred.

In a spectroscopy experiment, the cross section, σ , is
obtained from the photo‐induced decay count rate I as

∝σ
Φ

I

F
, (73)

where F is the photon flux and Φ is the quantum yield, defined
as the number of reactions per absorbed photon. For a thermally
induced decay, by nature a delayed reaction, the quantum yield
depends on the measurement time, the photon energy, and also
on the internal energy. Denoting the differential (energy‐
specified) quantum yield by ϕ, we can write

ϕ ϕ ν= ( )E h t t, , , ,1 2 (74)

where t t,1 2 are the beginning and the end of the experimental
detection window, i.e. the limits of the time interval during
which the decay is measured. The total yield is an integral over
the energy dependent contributions from the different excitation
energies:

∫ν ϕ ν νΦ( ) = ( ) ( − )h t t E h t t g E h E, , , , , d ,1 2 1 2 (75)

where ( )g E is the distribution of excitation energies
immediately before the photon absorption that happens at
time tlas. As before, the zero of time is conveniently set to
the time of creation in the source. Setting g to unity, the
quantum yield becomes, after taking depletion up to tlas into
account,

∫ν ϕ νΦ( ) = ( ) ν− ( − )h t t E h t t E, , , , , e d .k E h t
1 2 1 2

las (76)

The fraction σF of the energy distribution is shifted up by
the photon energy νh upon absorption. The energy distribution
becomes

σ σ( ) = ( − ) + ν− ( ) − ( − )P t E F F, e 1 e .las
k E t k E h tlas las (77)

This distribution has the time development
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To find the change in population due to photon absorption at the
high energy side, which is the relevant one for the question at
hand, subtract the non‐photo‐excited population;

≡ σ( ) ( ) − ( ) = (
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This is non‐negative anywhere and as the time derivative of it is
negative, the differences calculated below for the yields are all
non‐negative as required, although this may not be immediately
apparent from the expression. The energy‐specified quantum
yield for a photon‐enhanced decay is the difference between the
populations in Equation (79) at t1 and t2:
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The total quantum yield follows from integrating over all
energies:
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All times entering Equation (81) are instrumental and the
quantum yield can be calculated if the functional form for the
rate constant is known.

It is possible to reduce the number of parameters needed to
calculate the yield. Define the fictitous time t0 as

≡ν( − ) ( )k E h t k E t .las 0 (82)

It is clear from the definition that t0 is positive. It does not
depend on the frequency factor that appears in the description of
the rate constant (it appears on both sides of the equation as a
multiplicative factor and cancels). The value of t0 can therefore
be calculated from level densities and activation energies alone.
Although t0 is introduced as a fictitious time, it has a measurable
physical meaning as the zero of time for the photo‐excited part
of the ensemble. If the time‐resolved decay after laser excitation
is measured, it is found as the offset in the photo‐induced decay
as ∕( − + )t t t1 las 0 . This is particularly easy to measure in
storage ring experiments, see e.g. (Sundén et al., 2009), but it is
not unique to such experiments; also single pass experiments
may accomplish this. The identification of t0 with the
experimental time offset is derived below after some simplifica-
tions of the equations.

With the parametrization of the rate constant in Equation
(82) for the shifted energy, the signal becomes
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All four terms in the exponent in the integrand of Eq. (83)
contain the factor ( )k E , but are multiplied by different times. As
argued, the arguments of the exponentials are strongly varying
functions of energy, providing fairly sharp cutoffs in the energy
distribution. The cutoff energies, Em, for the energy distribution
for the laser excited species are

ω
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( )
+E t

E C

t
E

ln
,m

a v
0 (84)

where t may be either of the times − + − +t t t t t t t t, , ,las las1 2 1 0 2 0

in Equation (83).
The presence of such a cutoff energy greatly facilitates the

calculation of the integral, because these can be calculated as
the pairwise differences between the two cutoff energies. The
energy offset E0 cancels in the process and the integral is
approximately proportional to
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The factor E Ca v is independent of the photon energy and has
been left out. The contribution of the last two terms can be
approximated by an expansion to first order in ( / )t tln 2 1 . This
gives the (unnormalized) quantum yield;
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The value of t0 can be calculated if some information about the
energy dependence of the decay constant is available. Alternatively,
it is possible, as mentioned above, to relate t0 to the experimentally
observable decay rate after the photon absorption. The photon‐
enhanced decay rate is the derivative of Φ with respect to t1:
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A fit of the measured R versus −t tlas will give t0 directly. It
may be more convenient to fit −R 1,

∝ − +−R t t t .las
1

0 (88)

The derivation here provides the quantum yield for thermal,
photo‐induced decays from an ensemble of clusters with broad
energy distributions, and can be applied directly to convert yields
to relative cross sections for these situations. It works also when
the messenger atom technique is used, in which a weakly bound
atom is detached at a lower energy than the threshold for
unimolecular reaction of the undressed cluster. See, e.g., Cismesia
et al. (2017) and Gorlova et al. (2017) for two recent examples of
work using this technique. The benefit of the messenger atom
technique is that it extends the sensitivity of the spectroscopy to a
photon energy smaller than the naked cluster technique by a factor

∕E Ea atom a naked, , . However, the low internal energies required for
an efficient sticking of a messenger atom may be incompatible
with the requirement of a broad cluster excitation energy
distribution. This is patly an experimental issue which is best
addressed for the specific experiment undertaken.

It should also be mentioned that the results can be used
when the decaying systems radiate, with the proper modifica-
tions of the equations. A detailed analysis of these cases is given
in Hansen (2018a).

The main result presented here is an equation for the
quantum yield for a given photon energy in an ensemble
possessing a broad energy distribution. In this situation the
action yields need to be corrected with the quantum yields to
give the correct absorption cross section. This is achieved by
division with the expression in Equations (86) or (85). The
procedure for the nonradiative cases described here involve the
determination of the frequency factor of the measured process.

This will usually be by theoretical means, but as it enters
only logarithmically, the uncertainty associated with this will
have a minor effect. All times except t0 that enter the expression
are experimental values. The value of t0 is either measured as
described, or it is calculated with Equation (82).

VII. CONCLUSIONS AND OUTLOOK

Decays of free particles, without contact with a thermalizing
heat bath, will often occur with a power law time dependence,
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in spite of being completely statistical and exponential at the
level of individual particles. A power law decay does not
contain any characteristic time and consequently also no
characteristic energy that can be related to the activation energy
of the process. It does, however, have a zero of time, in contrast
to exponential decays.

The systematics associated with the power law decay has
consequences for a number of phenomena. One is the amount of
metastable decays, another the relation of hot cluster beam
abundances to binding energies. It also has importance when it
breaks down. The presence of a competing channel is one such
situation. Such a channel will, if dominant, cause distortions of
the decay which can be used to identify the characteristics of
this dark decay. Frequently observed cases involve thermal
photon emission.

The technique of using deviations from power law
decays to infer the properties of a dark competing channel
has been used for the decay spectra of metal cluster anions
in some of the presently longest storage time experiments at
electrostatic ion storage rings (Hansen et al., 2017b; An-
derson et al., 2018). In these experiments, made possible by
the low device temperatures which reduce the pressure and
hence the limiting factor of restgas collisions, the ions can
be stored for a good fraction of an hour. This permits the
identification of more than one radiatively suppressed power
law decay in the decay of an ionic species. Small copper
clusters, for example, have been observed to decay with two
such curves (Breitenfeldt et al., 2016; Hansen et al., 2017b).
They have been identified as originating from two different
populations of the cluster ions, differing by their angular
momenta (Hansen et al., 2017b). This conserved quantity
acts as a very efficient barrier, blocking the conversion
between the two types of isomers and endowing them with
different radiative properties, making their observation
possible by simple measurements of the decay rates.

In summary, the power law decay of isolated and highly
excited ions is both well established and useful for the
interpretation of a number of phenomena. It appears in its
most insisting form in long term storage devices, but is often
present in single pass devices also, even if much harder to
distinguish from the more commonly used fitting functions of
exponential decays.
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