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The kinetic energy release distributions in unimolecular reactions is calculated with detailed balance the-
ory, taking into account the tunneling and the reflection coefficient in three different types of transition
states; (i) a saddle point corresponding to a standard RRKM-type theory, (ii) an attachment Langevin
cross section, and (iii) an absorbing sphere potential at short range, without long range interactions.
Corrections are significant in the one dimensional saddle point states. Very light and lightly bound
absorbing systems will show measurable effects in decays from the absorbing sphere, whereas the
Langevin cross section is essentially unchanged.
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1. Introduction

The utility of unimolecular reactions in physical chemistry can
hardly be overstated. The theory of the phenomenon comes in sev-
eral varieties that can be classified by the nature of the transition
state that separates the precursor and the product in phase space.
The description of the situation where the reaction coordinate has
a saddle point shape, with the reaction bound to occur along a local
minimum on all but one direction in phase space where it passes
through a maximum, is one of the simplest to describe theoreti-
cally, and has been widely used to model the dynamics and ther-
modynamics of dissociating molecules, including kinetic energy
release distributions, in the context of the RRKM version of transi-
tion state theory [1–3]. The shape of the potential along the reac-
tion coordinate determines both the shape of the distribution of
the kinetic energy released in the asymptotically separated states
which are the ones measured and, by integration over this kinetic
energy, the total dissociation rate constant.

With the presence of a barrier, the idea of tunneling trough this
barrier appears naturally, with the concomitant consequences for
the rate constants that involve such a transition state. The effects
on the total (kinetic energy-integrated) rate constant was derived
in [4]. The connection of this type of transition state to the detailed
balance expression for the rate constant seems not to have been
formulated previously explicitly. Such a result will be relevant
for the interpretation of experimental data of the type presented
in e.g. [5–9], where kinetic energy release distributions show finite
energy gaps, indicating the presence of reverse barriers of varying
magnitudes. As the parameters of the saddle point determine
whether or not the transverse motion is thermally activated, i.e.
corresponding to a tight or loose transition states, an interpretation
of KER data must involve these parameters. Here, however, the dis-
cussion of the saddle point transition state will be restricted to
tight transition states only, corresponding to a truly one-
dimensional motion along a uniquely defined reaction coordinate
with no vibrational excitation of the transverse motion.

This is one extreme in the space of possible transition states.
Another extreme, a transition state entirely without a reverse acti-
vation energy, will also be considered. A large number of experi-
mental data rule out a reverse activation barrier and favor this
type of barrier-less transition state, see e.g. [10–30]. The tunneling
effects in the kinetic energy release distributions seem to have
been mainly ignored in these cases, although they were included
in a few cases [31,4,32,33,34].

The absence of a saddle point in the traditional sense presents a
situation for which detailed balance is well suited. The formulation
of detailed balance theory was pioneered by Weisskopf to describe
the emission of neutrons from highly, incoherently excited nuclei
[42]. Like for neutrons impinging on a nucleus, there is by assump-
tion no intrinsic barrier for the reverse process in the problem.
However, even in the absence of a static barrier, a barrier will arise
in the radial motion as the combination of the long range angular
momentum repulsion and the short range attraction of the
cohesive forces in the system, and there are therefore obvious
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advantages to be able also to treat a saddle point transition state
with detailed balance.

The purpose of the present work is to provide results for the
quantum corrections to kinetic energy release distributions in a
few situations where the calculations are tractable. The RRKM sit-
uation is fairly straightforward but the derivation of the result will
serve to shed light on the connection between the saddle point
transition state theory and detailed balance theory, which then
will be used for the non-barrier calculation.

The quantization of the rotational motion of the parent and pro-
duct will be ignored on the grounds of relative unimportance.
Moments of inertia are assumed so large and rotational levels con-
sequently so closely spaced that angular momenta can be treated
as continuous variables. Angular momentum conservation is auto-
matic in capture processes in spherical potentials and need not be
implemented explicitly [35]. Also the changes in angular momen-
tum of the large fragment due to the removal of the orbital angular
momentum is ignored. With the mass of the evaporated small frag-
ment, assumed a monomer, denoted by l, its kinetic energy by e,
the linear dimension of the decaying particle by r0 and its rota-
tional energy by Erot;N , the ratio of the orbital and molecule/cluster
angular momentum is on the order of

Lo
LN

� r0
ffiffiffiffiffiffiffiffiffi
2le

p
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lNErot;N

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

NErot;N

r
; ð1Þ

which is usually small and means that the changes in rotational
density of states of the product can be ignored [36].

2. RRKM-KER

The kinetic energy release distributions of the decay channel for
a saddle point transition state is determined by the RRKM rate
constant

kðEÞ ¼ NtðE� EtÞ
hqrðEÞ

; ð2Þ

where E is the excitation energy, Et the activation energy required
to reach the transition state, Nt is the integrated level density of
the transition state,

Nt �
Z E�Et

0
qtðE0ÞdE0 ¼

Z E�Et

0
qtðE� Et � eÞde; ð3Þ

where e is the kinetic energy released in the process, and qr is the
level density of the reactant. h is Planck’s constant. The energy-
specified rate constant which gives the kinetic energy release distri-
butions is

kðE; eÞde ¼ qtðE� Et � eÞ
hqrðEÞ

de: ð4Þ

It is convenient to express the dependence of the product level den-
sity on e with a simple exponential expression based on the leading
order expansion of the logarithm:

qtðE� Et � eÞ � elnðqtðE�EtÞÞ�e@ lnðqt ðE�Et ÞÞ
@E � e�e=kBTtqtðE� EtÞ; ð5Þ

where Tt is the effective temperature of the transition state. This
expansion has been discussed at a number of places (see e.g. [37])
and will be used here without any further justification. The kinetic
energy release distribution at the top of the barrier becomes

kðE; eÞde / e�e=Ttde: ð6Þ
Boltzmann’s constant, kB, is set equal to unity here and in the fol-
lowing, i.e. temperatures are measured in energy units or vice versa.
Asymptotically separated species will have kinetic energy release
distributions shifted by the barrier height Vmax � Vðr ! 1Þ � DE:
kðE; eÞdðeÞ / e�ðe�DEÞ=Ttde; ðe P DEÞ
0; ðe < DEÞ

(
ð7Þ

Apart from this offset, the distributions are uniquely characterized
by the transition state temperature.

The many applications RRKM rate constants have found in the
past notwithstanding, the derivation of the energy distributions
seems not entirely satisfactory, as it is based on a constant poten-
tial for the calculation of its semiclassical level density of the reac-
tion coordinate. This step occurs in Eq. (3), where the integration
over the decaying states, weighted by the flux factor given by the
speed, v, and the concentration, 1=L, gives the differential

v
L
1
h
dxdp ¼ 1

L
1
h
dxdE0; ð8Þ

where L is the arbitrary length over which one calculates the semi-
classical free particle density of states given by the differential on
the left hand side of the equation, and where E0 � vp=2 is the kinetic
energy. The flat potential that gives rise to the specific expression in
Eq. (8) is causing the potential conflict with the assumed parabolic
parametrization of the barrier.

To examine the point where this inconsistency has quantitative
consequences, the range of applicability of the approximation
needs to be examined. A necessary criterion for the use of the den-
sity of states derived from a flat potential is that the de Broglie
wavelength, k of the quasi-particle, as calculated point-wise from
the kinetic energy, does not change significantly over one wave-
length. With the potential, centered at x ¼ 0,

V ¼ �1
2
lx2x2; ð9Þ

and a kinetic energy e at the top of the barrier, the criterion
becomes

h
pð0Þ �

h
pðkð0ÞÞ �

h
pð0Þ ) e � hx=2: ð10Þ

With typical kinetic energies of e � Tt=2 this becomes

Tt � 2p�hx: ð11Þ
With �hx on the order of typical vibrational frequencies, this
inequality is not trivially fulfilled. It is therefore necessary to evalu-
ate the corrections to Eq. (6) arising from this approximation.

One may attempt to calculate the corrections with an improved
single degree level density for the reaction coordinate. Attempts to
do so tend to introduce ambiguities, because the inverted parabola
does not have a natural quantization due to the absence of classical
turning points, and boundary conditions will then have to be intro-
duced by hand in an ad hoc fashion.

The application of the requirement of detailed balance to the
reaction solves this problem. Detailed balance is based on the iden-
tity of the product of the level density of one of the states and the
rate constant out of this state to the analogous product for the
inverse process. In unimolecular decay this leads to the rate
constants

kðE; eÞde ¼ gl
p2�h3 rðeÞe

qtðE� Ea � eÞ
qrðEÞ

de; ð12Þ

where E is the excitation energy, e the kinetic energy, g the small
fragment electronic degeneracy, or more generally electronic parti-
tion function [38], l the reduced mass of the channel, rðeÞ the
energy dependent capture cross section for the inverse process,
and Ea the activation energy, which in this case is the energy of
the transition state minus the ground state energy of the reactant.

The similarity with the RRKM equation is obvious and would
become even more after integration over the kinetic energy of
the channel. For the purpose of this discussion, the salient point
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Fig. 1. The transmission coefficient (dotted line), the uncorrected kinetic energy
distribution (dashed line), and the corrected kinetic energy release distribution
according to Eq. (20) (full line), all for a model system with DE ¼ 1 eV,
�hx ¼ Tt ¼ 0:1 eV. The curves for Eqs. (19) and (20) are indistinguishable on the
scale of the figure.
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in the equation is the presence of the capture cross section and the
absence of a reaction coordinate translational motion level density.
The equation is general, as written, and the connection to the one-
dimensional RRKM problem is established by considering the steps
that lead to Eq. (12). Apart from the electronic degeneracy factor,
which will be ignored for this calculation, the factor multiplying
the ratio of level densities is the three dimensional analogue to
Eq. (8). It arises as the product of the fragment concentration, the
speed v, and the capture cross section, r;

v 1
V

d3p
R
d3x

h3 rðeÞ ¼ v d3p

h3 rðeÞ; ð13Þ

where the cancelled quantity V is the volume of the container
where the reaction takes place. When the reaction proceeds one-
dimensionally, along the z-axis, say, the cross section can be
expressed as

rðeÞ ¼ jTðeÞj2h2dðpxÞdðpyÞ; ð14Þ
where T is a dimensionless transmission coefficient which is a func-

tion of the kinetic energy, and hence jTj2 the transmission
probability.

It is implicit in the calculation here and in standard RRKM the-
ory that the shape of the saddle point does not change during pas-
sage. A periodic variation of the transition state potential has been
found to influence the tunneling rate [39]. Such corrections will not
be discussed here.

Inserting the cross section in Eq. (14) into the equation for the
prefactor, Eq. (13), and integrating out the two momenta px; py

givesZ
dpxdpy

vdpz

h3 rðeÞ ¼ vz

h
jTðeÞj2dpz ¼ jTðeÞj2 de

h
: ð15Þ

This result should be compared with the prefactor in Eq. (2). We see
that these are identical when the transmission coefficient is a step-
function with the step at zero energy,

jTðeÞj2 ¼ HðeÞ; ðclassical motionÞ: ð16Þ
Generally, however, this classical value is insufficient. Two (related)
effects will make it so. The first is the quantum mechanical tunnel-
ing of atoms through the top of the barrier. This will allow transmis-
sion of particles with energy below the saddle point through the
barrier. The other effect, also of quantum mechanical origin, is the
fact that impinging particles will be reflected with non-zero proba-
bility also above the barrier. The effective density of states of the
reaction coordinate is then the free particle values multiplied by
the transmission coefficient.

Both tunneling and reflection can be accounted for by a single
calculation, as was already shown in [4], where the consequences
for the total unimolecular rate constants were derived. The poten-
tial around the saddle point was assumed to be of the form [40]

V ¼ DEcosh�2 l
DE

xz
� �

ð17Þ

� DE� 1
2
lx2z2 þ O

1
24

l3x6z6

DE2

� �
;

centered at z ¼ 0. The transmission coefficient of this potential is
calculated in [41]. It is, with higher order exponentially suppressed
terms left out, equal to

jTj2 ¼ e4p
DE
�hx

ffiffiffiffiffiffiffiffi
1þ e

DE

p
�1ð Þ

e4p
DE
�hx

ffiffiffiffiffiffiffiffi
1þ e

DE

p
�1ð Þ þ 1

; ð18Þ

which also includes cases of negative kinetic energies, as measured
from the top of the saddle point. With Eq. (7) this gives the distri-
butions far from the saddle point, shifted by DE;
kðE; eÞdðeÞ / e�ðe�DEÞ=Tt e4p
DE
�hx

ffiffiffi
e
DE

p
�1ð Þ

e4p
DE
�hx

ffiffiffi
e
DE

p
�1ð Þ þ 1

de; ð19Þ

where eP 0. If DE is much larger than the typical thermal energy,
which can be verified in the experimental kinetic energy release
spectra, the arguments of the exponentials can be expanded to first
order in e� DE to give

kðE; eÞdðeÞ / e�ðe�DEÞ=Tt e
2pðe�DEÞ

�hx

e
2pðe�DEÞ

�hx þ 1
de: ð20Þ

This covers e < DE, as well as above-the-barrier situations. As also
observed in [4], this energy dependence allows for situations where
the kinetic energy release distribution is peaked at an energy corre-
sponding to tunneling. This will occur when (see Fig. 1)

�hx > pT: ð21Þ
3. Spherical potentials

As mentioned previously, a significant part of measured kinetic
energy release distributions show no appreciable gap, DE � 0.
However, the equations of motion for the radial coordinate still
contains the centrifugal barrier. With the static potential VðrÞ,
the total (effective) radial potential is

VeðrÞ ¼ VðrÞ þ L2

2lr2
; ð22Þ

where L is the magnitude of the (conserved) angular momentum
vector, l is the reduced mass of the channel and r the center-of-
mass distance between the two fragments. The barrier for this
potential is fairly asymmetric, with a short range attractive part
and a long repulsive tail.

A general solution to this problem in closed form is not feasible
because of the number of different possible functional forms of the
potentials. We will here treat only the two special cases of (i) the
potential arising from the interaction of a small, polarizable frag-
ment and a larger ionic fragment, and (ii) two neutral species with
no interaction beyond a contact distance, at which they fuse. Case
(i) has been considered in [44], but with a tunneling matrix ele-
ment based on Coulomb repulsion, i.e. a 1=r vs. the relevant 1=r2

repulsive potential. The question therefore deserves a second view.
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3.1. Langevin cross section corrections

For case (i), the classical cross section is the one given by
Langevin;

rL ¼ p 2a00

e

� �1=2

; ð23Þ

where a00 � ae2=4p�0 and a is the polarizability. The dimension of
a00 is energy times length to the fourth power. The derivation of this
cross section is based on conservation of angular momentum and
energy which combine to give the equation of motion for the radial
coordinate:

e ¼ �1
2
a00

r4
þ 1
2
l _r2 þ e

b2

r2
; ð24Þ

when the angular momentum is expressed in terms of the impact
parameter b. For the point where the time derivative of the radial
coordinate is zero, _r ¼ 0, there is a highest value of b; bm, for which

this equation has a solution. The cross section equals pb2
m. The

radial distance corresponding to _r is located at the maximum of
the effective radial potential

Ve ¼ �1
2
a00

r4
þ L2

2lr2
: ð25Þ

The magnitude of the angular momentum is

L ¼ b
ffiffiffiffiffiffiffiffiffi
2le

p
: ð26Þ

Expanding the potential to second order in r at the maximum gives

Ve � L4

8l2a00 �
1
4

L6

l3a002 r �
ffiffiffiffiffiffiffiffiffiffiffi
2la00p
L

 !2

: ð27Þ

Identification of the terms with those of Eq. (17) and representing
the barrier with Eckart’s function, disregarding the asymmetry of
the barrier, we have the correspondences

DE $ L4

8l2a00 ; ð28Þ

x $ L3ffiffiffi
2

p
l2a00 :

The modified capture cross section is then calculated as

rðeÞ ¼
Z 1

0
2pjTj2bdb; ð29Þ

with the transmission coefficient given in Eq. (18). Expressed with
the parameters

DE ¼ e2

2a00 b
4 � ab4

; ð30Þ

�hx ¼ �h
2e3=2ffiffiffiffilp a00 b

3 � cb3
;

the cross section becomes

r ¼ 2p
Z 1

0

e
2pðe�ab4Þ

cb3

e
2pðe�ab4 Þ

cb3 þ 1
bdb: ð31Þ

With typical values of parameters, e ¼ 0:1 eV and l some tens of
Dalton, the numerator of the argument of the exponential varies
much faster than the denominator. With an expansion to first order
in b around the critical impact parameter where the fraction van-
ishes, we then get

r ¼ 2p
Z 1

0

e�
8pa
c b� e

að Þ1=4
� �

e�
8pa
c b� e

að Þ1=4
� �

þ 1
bdb: ð32Þ
The expansion of the argument of the exponential, retaining only
the first order term is not very accurate. However, as numerical
examples below will show, the effects are small for this potential,
and approximations do not need to be extremely good at this point.

Continuing therefore with this approximation, we note that the
derivative of the argument of the exponential is typically 1012 m�1

at the expansion point. The expression can therefore be calculated
with the Sommerfeld expansion [45] with b in the role of energy,

c=8pa as temperature and ðe=aÞ1=4 acting as the chemical potential.
The result is

r ¼ p 2a00

e

� �1=2

þ p
24

�h2

le
: ð33Þ

The first term is the Langevin cross section, and the second the
quantum correction. For masses of a few tens of Dalton and kinetic
energies of 0.1 eV, the correction is small. For the specific example
of C2 loss from an idealized point-like C60, using the parameter val-
ues a00 ¼ 72 eV Å4 [46], l ¼ 24 u, and the energy 0.4 eV, gives the

negligible correction of 2 � 10�4 Å
2
. For atoms evaporating from

helium droplets, with T ¼ 0:4 K, the correction is 4 Å2, which is
comparable to the surface diffuseness squared in these systems.

3.2. Absorbing sphere

The Langevin cross section describes an idealized situation
where the interacting particles are point-like. To account for the
size of the involved molecules, the simplest step is to introduce a
finite radius, r0, at which the two particles fuse. The general solu-
tions of the classical equations of motion in that case are easily
obtained for attractive potentials by an extension of the reasoning
used to derive the Langevin cross section (see for example section
5 of chapter 5 in [35]). Including the finite capture radius into the
Langevin cross section will, however, introduce a new parameter in
the problem, viz. the position of the barrier relative to the capture
radius. This will change the shape of the barrier maximum from a
rounded shape to a strongly peaked one, and all possible combina-
tions of these in between. This makes a solution very unwieldy,
requiring the patching together of several approximate solutions.
We will here consider the simpler case of vanishing long range
interactions. This corresponds to calculating the quantum correc-
tions to the capture cross section of two neutral particles with no
appreciable product of polarizabilities.

The absence of a long range potential renders the radial poten-
tial that of the angular momentum barrier with a sharp cutoff at
the absorbing sphere radius;

Ve ¼
L2

2lr2 ðr P r0Þ;
�1 r < r0ð Þ:

(
ð34Þ

The potential is reminiscent of the emission of electrons from a sur-
face in an electric field [47]. The known exact solutions [48,43] for
that problem are unfortunately only marginally relevant here,
because the differences in the potentials are still too large. Further-
more, we note that the identification of the flat potential in the inte-
rior of a solid surface, relevant for thermionic emission from the
quasi-free electron gas in metals, with the absorbing potential rele-
vant here may be a questionable proposition.

The reflection requires special consideration in the absence of a
long range potential. Physically, the reflection corresponds to scat-
tering from regions where there is no potential and none has been
encountered. It is not reasonable to expect such an effect to appear
in a semiclassical calculation. The same conclusion is also reached
if one considers the motion around an arbitrarily chosen point in
the absence of any potential. Clearly, this will not lead to any
reflection. The reflection will therefore be set to zero, and the
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tunneling through the barrier will be the only effect that will be
considered.

The square modulus of the Wenzel-Brillouin-Kramers tunnel
matrix element is given by

jTj2 ¼ exp �
ffiffiffiffiffiffiffi
2l

p
�h

Z rt

r0

L2

2lr2
� e

 !1=2

dr

0
@

1
A

¼ exp � r0
ffiffiffiffiffiffiffiffiffi
2le

p
�h

b
r0

Z b=r0

1
x�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
dx

 !
; ð35Þ

where rt ¼ b is the classical turning point (there are two, the outer
is the relevant one here). This predicts complete transmission at the
top of the barrier and above, corresponding to our case.

The integral in Eq. (35) has no solution in terms of known func-
tions [49]. Instead it was found numerically that in the interval
10�2 6 b=r0 � 1 6 1, the product of the integral and the prefactor

b=r0 is well approximated by the function 0:93ðb=r0 � 1Þ1:5. With
this, the cross section can be calculated in terms of the gamma
function. The result is:

rðeÞ ¼ pr20 1þ 1:31
�h

r0
ffiffiffiffiffiffiffiffiffi
2le

p
 !4=3

þ 1:89
�h

r0
ffiffiffiffiffiffiffiffiffi
2le

p
 !2=3

0
@

1
A: ð36Þ

With the abbreviation

e0 � �h2

2lr20
; ð37Þ

the corresponding kinetic energy release distributions are then

PðeÞde / e 1þ 1:31
e0
e

� �2=3
þ 1:89

e0
e

� �1=3� �
e�e=T de: ð38Þ

The corrections have the largest consequences for light species with
low binding energies. The average kinetic energy is calculated to

hei ¼ T
2þ 1:56 e0

T

� �2=3 þ 5:63 e0
T

� �1=3
1þ 1:17 e0

T

� �2=3 þ 3:38 e0
T

� �1=3 : ð39Þ

Fig. 2 shows the calculated values for a helium droplet with
radius 1 nm at a product temperature of 0.4 K, which is the
expected value for such droplets. The average energy in the
tunneling-corrected spectrum is 0.71 K, vs. the 0.8 K for the uncor-
rected spectrum. Fig. 3 shows the average values as a function of
the dimensionless parameter �h=r0

ffiffiffiffiffiffiffiffiffi
2lT

p
. The integrated spectra

differ by a factor of 2.2, i.e. the averaged cross section increases
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Fig. 2. The kinetic energy release distributions for a helium droplet of radius 1 nm
with the quantum corrected capture cross section of Eq. (36) (full line) and
uncorrected (dotted line). The curves are normalized to the same area.
by this factor when tunneling is taken into account. This factor also
gives the increase in total rate constant due to tunneling. The
width is less affected; The standard deviation is reduced from
0.57 K to 0.54 K.

4. Summary

The kinetic energy release distributions gains considerable cor-
rections in saddle point transition states. For the two spherical sys-
tems investigated, only the absorbing sphere leads to a measurable
change in the KER distributions, most pronounced for light frag-
ments and small effective product temperatures.
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